A I:l 1 D A Introduction to the ARM® Processor
=) Using Altera Toolchain

For Quartus Il 15.0

1 Introduction

This tutorial presents an introduction to the ARM® Cortex-A9 processor, which is a processor implemented as a
hardware block in Altera’s Cyclone® V SoC FPGA devices. The tutorial is intended for a user who wishes to use an
ARM-based system on Altera’s DE1-SOC board.

A full description of ARM processors is provided in the ARM Architecture Reference Manual, which is available on
the ARM Holdings web site.
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2 Overview of ARM Cortex-A9 Processor Features

The ARM Cortex-A9 processor has mostly a Reduced Instruction Set Computer (RISC) architecture. Its arithmetic
and logic operations are performed on operands in the general-purpose registers. The data is moved between the
memory and these registers by means of Load and Store instructions.

The word-length of the processor is 32 bits. Data byte addresses in a 32-bit word are assigned in little-endian style,
in which the lower byte addresses are used for the less significant bytes (the rightmost bytes) of the word.

3 Register Structure

All registers in the ARM Cortex-A9 processor are 32 bits long. There are 15 general-purpose registers, RO to R14,
a Program Counter, R15, and a Current Program Status Register, CPSR, as shown in Figure 1. All general-purpose
registers can be used in the same way. However, software programs usually treat two of them in a special way.
Register R13 is used as a Stack Pointer. Register R14 is used as a Link Register in subroutine linkage. In assembly-
language programs, the registers R15, R14 and R13 can also be referred to by using the acronyms PC, LR and SP,
respectively. In assembly-language programs, the register names can be written either in upper or lower case. Thus,
R1, R2, PC, LR and SP is equivalent to r1, r2, pc, Ir and sp.

31 0
RO
R1
R13 SP - Stack pointer
R14 LR - Link register
R15 PC - Program counter
313029 28 76 5 4 0
CPSR |N|Z|C|V I [F|T Status register

L Processor mode

Condition code flags
L ARM or Thumb operation

L Interrupt disable bits

Figure 1. ARM register structure.
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The CPSR register has the following contents:

* Condition Code flags which are set based on the results of a previous operation. Most ARM instructions can
be executed conditionally based on the values of these flags:

Negative (N) - set to 1 if the result is negative; otherwise, cleared to 0

Zero (Z) - set to 1 if the result is 0; otherwise, cleared to O.

Carry (C) - set to 1 if a carry-out results from the operation; otherwise, cleared to 0.

Overflow (V) - set to 1 if arithmetic overflow occurs; otherwise cleared to 0.
* Interrupt-disable bits, I and F, where

— I =1 disables the IRQ interrupts
— F =1 disables FIQ interrupts

e Thumb bit, where

— T =0 indicates ARM execution

— T =1 indicates Thumb execution
* Processor mode bits which identify the mode in which the processor is operating, as explained in Section 9.

For some registers, there are duplicate registers, called banked registers, for saving the contents of primary registers
when various types of interrupts occur, as discussed in Section 10.

4 Instruction Sets

The ARM Cortex-A9 processor can execute instructions in three different instruction sets, known as ARM, Thumb
and Thumb-2.

The ARM set is the most powerful. All instructions are 32 bits long. The instructions are stored in memory in
word-aligned manner.

The Thumb set is a smaller version, where the instructions are provided in a format that uses only 16 bits. This
usually results in smaller memory requirements, which can be useful in embedded applications.

The Thumb-2 set includes both 16- and 32-bit instructions. Its functionality is almost identical to that of the ARM
instruction set.

In this tutorial we will deal only with the ARM instruction set. We should note that there exists a Unified Assembler
Language (UAL), which provides a common syntax for ARM and Thumb instructions. It supersedes the previous
versions of both the ARM and Thumb assembler languages. We will use UAL in this tutorial.
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5 Accessing Memory and I/O Devices

Any input/output devices that can be accessed by the ARM processor are memory mapped and can be accessed
as memory locations. Data accesses to memory locations and I/O interfaces are performed by means of Load and
Store instructions, which cause data to be transferred between the memory and general-purpose registers. The ARM
processor issues 32-bit addresses. The memory space is byte-addressable. Instructions can read and write words (32
bits), halfwords (16 bits), or bytes (8 bits) of data.

5.1 Addressing Modes for Load and Store Instructions

The Load and Store instructions are the only type of instructions that can access memory locations. Load instructions
copy the contents of a memory location specified by an addressing mode into a destination register, which is a
general-purpose register, Rd. Store instructions copy the contents of a general-purpose register, Rd, into a memory
location specified by an addressing mode.

An addressing mode provides the information needed to determine the address of the desired memory location.
There are different ways of specifying the required address. All addressing modes involve one or two general-
purpose registers, plus some additional information. One register is referred to as the base register, Rn. If a second
register is used, it is referred to as the index register, Rm. The memory address is determined by adding the contents
of the base register and a value that is either given as a signed 12-bit offset directly in the instruction or as a magnitude
in the index register. The magnitude in Rm can be scaled by shifting it either left or right a number of bit-positions
specified in the instruction.

There are three primary addressing modes provided:

* Offset mode — the address is determined by adding the contents of a base register and an offset that is either
given directly in the instruction or in an index register.

* Pre-indexed mode — the address is determined in the same way as in the Offset mode; subsequently, this
address replaces the contents of the base register used.

* Post-indexed mode — the address is the contents of a base register; subsequently, the base register is loaded
with a new address that is determined in the same way as in the Offset mode.

These addressing modes are fully specified in Table 1, which indicates how the address generation is performed.
The table also gives the required Assembler syntax.

When an index register is specified, its contents are interpreted as a magnitude which can be either added to or
subtracted from a base register. This magnitude can first be shifted left or right by specifying LSL #k or LSR #k,
respectively, where k is an integer from 1 to 31. Shifting operations are discussed further in section 6.7.

Since the Program Counter, R15, can be treated as a general-purpose register, it can be used in the Offset addressing
mode as a base register, Rn. This makes it possible to access memory locations in terms of their distance relative to
the current address in R15. This mode is often referred to as the Relative addressing mode.
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TABLE 1. Memory addressing modes

Name Assembler syntax Address generation

Offset:
immediate offset [Rn, #offset]
offset in Rm [Rn, £Rm, shift]
Pre-indexed:

immediate offset [Rn, #offset]!

offset in Rm [Rn, £Rm, shift]!

Post-indexed:

immediate offset [Rn], #offset

offset in Rm [Rn], £Rm, shift

Address = [Rn] + offset
Address = [Rn] + [Rm] shifted

Address = [Rn] + offset;
Rn — address

Address = [Rn] £ [Rm] shifted;
Rn — address

Address = [Rn];
Rn — [Rn] + offset

Address = [Rn];
Rn — [Rn] + [Rm] shifted

offset = a signed number given in the instruction

shift = direction #integer

where direction is LSL for left shift or LSR for right shift, and
integer is a 5-bit unsigned number specifying the shift amount

+Rm = the magnitude in register Rm that is added to or subtracted
from the contents of base register Rn

Consider the Load instruction, LDR, which loads a 32-bit operand into a register. The instruction

LDR R2, [R6, #-8]

loads R2 from the address in R6 minus 8. The instruction

LDR R2, [R6, #0x200]

loads R2 from the address in R6 plus the hexadecimal number 0x200. The instruction

LDR R2, [R6, —R8]
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loads R2 from the address obtained by subtracting the contents of R8 from the contents of R6.

The Pre-indexed mode is illustrated in

LDR R2, [R6, RS, LSL #4]!

which loads R2 from the location whose address is determined by shifting the contents of R8 to the left by 4 bit-
positions (which is equivalent to multiplying by 16) and adding the result to the contents of R6. Subsequently, the
generated address is loaded into R6.

An example of Post-indexed mode is

LDR R2, [R6], #20

where R6 contains the address of the location from which an operand is loaded into R2. Subsequently, the contents
of R6 are modified by adding to them the offset value 20.

Relative addressing can be used simply by specifying the address label associated with the desired memory location.
For example, if MEMLOC is the desired location, then the instruction

LDR R2, MEMLOC

will load the contents of memory location MEMLOC into register R2. The assembler will determine the immediate
offset as the difference between the address MEMLOC and the contents of the updated Program Counter. It will
generate the instruction

LDR R2, [R15, #offset]

This offset takes into account the fact that when the instruction is to be executed, the Program Counter will already
be incremented by 8, because the ARM processor will already have fetched the next instruction (due to pipelined
execution).

5.2 Format for Load and Store Instructions

The format for Load and Store instructions is shown in Figure 2. The operation code (OP-code) is provided in bits
27 to 20. The register Rd, which is used as the destination in load instructions or as the source in store instructions,
is identified by bits 15 to 12. The base register, Rn, is identified by bits 19 to 16. Bits 11 to 0 may contain a signed
12-bit offset or identify an index register. If an index register is used, its number, m, is given in the low-order four
bits of the instruction.

Observe, in Figure 2, that the high-order four bits denote a condition for the instruction. In ARM processors, most
instructions can be executed conditionally, as explained in Section 6.11.
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31 28 27 2019 1615 12 11 0
Condition| OP code Rn Rd Offset or Rm

Figure 2. Format for Load and Store instructions.

6 ARM Instructions

ARM instructions are 32-bits long. In addition to machine instructions that are executed directly by the processor,
the ARM instruction set includes a number of pseudo-instructions that can be used in assembly language programs.
The Assembler replaces each pseudo-instruction by one or more machine instructions.

This section discusses briefly the main features of the ARM instruction set. For a complete description of the instruc-
tion set, including the details of how each instruction is encoded, the reader should consult the ARM Architecture
Reference Manual.

6.1 Load and Store Instructions

Load and store instructions are used to move data between memory (and I/0 interfaces) and the general-purpose
registers. The LDR (Load Register) instruction, illustrated in the previous section, loads a 32-bit operand into a
register. The corresponding Store instruction is STR (Store Register). For example,

STR R2, [R4]

copies the contents of R2 into memory location at the address that is found in register R4.

There are also load and store instructions that use operands that are only 8 or 16 bits long. They are referred to as
Load/Store Byte and Load/Store Halfword instructions, respectively. Such load instructions are:

LDRB (Load Register Byte)

LDRSB (Load Register Signed Byte)

LDRH (Load Register Halfword)

LDRSH (Load Register Signed Halfword)

When a shorter operand is loaded into a 32-bit register, its value has to be adjusted to fit into the register. This is
done by zero-extending the 8- or 16-bit value to 32 bits in the LDRB and LDRH instructions. In the LDRSB and
LDRSH instructions the operand is sign-extended.

The corresponding Store instructions are:

* STRB (Store Register Byte)
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* STRH (Store Register Halfword)

The STRB instruction stores the low byte of register Rd into the memory byte specified by the address. The STRH
instruction stores the low halfword of register Rd.

6.1.1 Loading and Storing Multiple Registers

There are two instructions that allow loading of data into multiple registers, LDM (Load Multiple), and storing the
contents of multiple registers into memory, STM (Store Multiple). The memory operands must be in successive
word locations. These instructions are useful for two main purposes:

* transferring blocks of data between memory and processor registers, and

* saving data in registers on a stack when subroutines are used.

The address of the first word in memory is given in the base register, Rn. Upon transferring the last word of data,
the contents of Rz can be updated with the last address by specifying the Pre-indexed addressing mode.

An instruction must specify the registers involved in the transfer. The registers must be listed in ascending order in
the assembly-language instruction, in a field enclosed by braces, but they do not have to be contiguous. A range of
registers is specified by listing the first and the last registers in the range, separated by a dash (—). In the resulting
machine instruction, each register is identified by setting a corresponding bit in the field comprising the low-order
16 bits.

The instruction must also indicate the direction in which memory addresses are computed. For block transfers there
are four possibilities for determining the addresses of consecutive data words. The address can be incremented or
decremented by 4 either before or after each data item is accessed. The desired action is specified by appending a
suffix to the OP-code mnemonic in the assembly-language instruction. The four suffixes are:

* TIA — Increment After

* IB — Increment Before

¢ DA — Decrement After

¢ DB — Decrement Before

For example, the instruction

LDMIA R3!, {R4, R6-R8, R10}

will load registers R4, R6, R7, R8 and R10. If the starting address in R3 is 1000, then the data loaded into the
registers will be from addresses 1000, 1004, 1008, 1012 and 1016, respectively. Because the Pre-indexed mode is
specified, the final contents of R3 will be 1020.
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The LDM and STM instructions are very useful in the context of subroutines, where they can be used to save
the contents of registers on the stack. For this purpose, there exist pseudo-instructions PUSH and POP, which are
actually implemented as particular forms of STM and LDM instructions. In these instructions the Stack Pointer, SP,
is the base register, which is always updated. The SP is decremented by 4 before each transfer in PUSH instructions,
and it is incremented by 4 after each transfer in POP instructions. For example, the instruction

PUSH ({R1, R3-R5}
places the contents of registers R1, R3, R4 and RS on the stack. The equivalent Store Multiple instruction would be
STMDB SP!, {R1, R3-R5}
The instruction
POP ({RI, R3-R5}
restores the contents of these registers from the stack. The equivalent Load Multiple instruction would be
LDMIA SP!, {R1,R3-R5}

6.2 Data Processing Instructions

A variety of ARM instructions are provided for the processing of data, including instructions that perform shifting,
arithmetic operations, logical operations, and data transfer between registers.

6.3 Flexible Operands

A number of data processing instruction have the general form

OP Rd, Rn, Operand?

where Rd is the destination register, R is the first operand, and Operand? is the second operand. A considerable
amount of flexibility is provided by Operand2. It can be an immediate constant, as in

OP Rd, Rn, #value

This instruction performs the operation OP using the contents of Rn and the constant value, and places the result
into Rd. For example, if OP is the addition instruction ADD, then

ADD RO, R1, #1
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adds 1 to the contents of R1 and places the sum into R0O. The constant value can be specified as a decimal number,
as in this example, or as a binary value #0b1, or as a hexadecimal value #0x1. Valid constants include any eight-bit
value, such as OxFF. The eight-bit value can also be produced by rotation in a 32-bit word—for example, other valid
constants include OxFF000000, OxFF0000, and OxFF0O. In general, the constant can be any value which can be
generated by rotating a byte to the right any even number of times (0, 2, ..., 30) in a 32-bit word (see the ARM
Assembler Reference for more details).

Alternatively, Operand?2 can be given as a register Rm, as in
OP Rd,Rn,Rm

This instruction performs the operation OP using the contents of Rn and Rm, and places the result into Rd. For
example

ADD RO, R1,R2

adds the contents of R1 and R2, and places the sum into RO.

When Operand? is a register, Rm can either be used directly, as in the above example, or else its value can be shifted
before being used. If it is shifted, then the shifting amount can be specified as a five-bit constant, as in

OP Rd, Rn, Rm, LSL #3
or as the least-significant byte of a register Rs, as in
OP Rd,Rn,Rm,LSL Rs

In these examples LSL means Logical Shift Left. Other examples of shift variants include right-shift, and rotate
operations, as discussed in section 6.7.

6.3.1 Using Condition Code Flags

The data processing instructions can optionally affect the ARM condition code flags, or can be executed conditionally
based on the values of the condition code flags. These options are expressed in the general form

OP{S}{cond} Rd, Rn, Operand?

If S is included in the instruction mnemonic, as in ADDS, then the condition code flags will be set depending on the
results of the instruction. But if S is not included, as in ADD, then the flags are unaffected by the instruction. Setting
of the condition code flags is discussed further in Section 6.9.

An optional cond appended to an instruction mnemonic allows an instruction to be either executed or skipped,
depending on the current values of the condition code flags. This concept is discussed in Section 6.10.
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6.4 Arithmetic Instructions

As illustrated above, an arithmetic operation such as
ADD Rd, Rn, Operand2

adds the contents of R#z and the value determined as Operand?2 into Rd. For example, the instruction
ADD RO, RI1,R2, LSL #2

adds the contents of R1 and a shifted version of the contents of R2, and places the sum into RO. The operand R2
is shifted to the left by 2 bit positions (which is equivalent to integer multiplication by 4) before it is used in the
addition.

In an assembly-language instruction, it is possible to specify a negative number as the immediate operand, as in
ADD RO, RI1, #-24
The Assembler will implement this operation with the Subtract instruction
SUB RO, R1, #24

6.4.1 Multiplication

There are two versions of multiplication instructions:

* MUL — (Multiply)
* MLA — (Multiply Accumulate)

The Multiply instruction
MUL R2, R4, R5

multiplies the contents of registers R4 and RS, and places a 32-bit product into register R2. If the generated product
exceeds 32 bits, then the low-order 32 bits are retained and the high-order bits are discarded.

The MLA instruction multiplies the operands in two registers to produce a 32-bit product, which is then added to
the third operand, and the result is written into the destination register. Thus,

MLA R2,R4,R5,R6
multiplies the numbers in R4 and RS5, adds to this product the number in R6, and places the result into register R2.
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6.5 Logic and Test Instructions

The logic instructions provide the AND, OR and Exclusive-OR operations. The AND instruction
AND Rd, Rn, Operand2

performs a bitwise logical AND of the contents of register Rn with the value of Operand2, and stores the result in
register Rd. Similarly, the instructions ORR and EOR perform the OR and Exclusive-OR operations, respectively.

Another useful logic instruction is BIC, which stands for Bit Clear. It performs a bitwise AND of the operand in Rn
with the complement of Operand2, and stores the result in Rd.

There are two instructions that perform logic operations for testing purposes. The Test instruction
TST Rn, Operand2

performs the AND operation using the contents of Rn and Operand?2, and sets the condition code flags based on the
result obtained. The Test Equivalence instruction

TEQ Rn, Operand2

compares the value in Rz with the value represented by Operand?2. This is done by exclusive-ORing the two values
and setting the condition code flags accordingly.

6.6 Move Instructions
The Move instructions copy the contents of one register into another, or they place an immediate value into a register.

The Move instruction
MOV Rd, Operand2

moves the value of Operand? into register Rd.

The Move Negative instruction
MVN Rd, Operand?

moves the complement of the value of Operand?2 into Rd.

The Move Top instruction
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MOVT Rd, #immedl16

loads a 16-bit immediate value into the high-order 16 bits of Rd, and leaves the low-order 16 bits unchanged.
There are also two special instructions, MRS and MSR, which copy the contents of a processor status register to/from

a general-purpose register. These instructions are available only when the processor is running in a privileged mode,
as explained in Section 10.

6.6.1 Loading 32-bit Constants into Registers
The simplest approach is to use the load-register pseudo-instruction

LDR R2, =0x12345678

in which case the Assembler will place this constant, and other constants defined in such manner, into a literal pool
in the memory, from where it will be taken at execution time. In the assembled code, this LDR instruction will use
the Relative addressing mode to access the literal pool. The Assembler decides where in memory to place the literal
pool; typically, it is immediately following the program’s machine code.

A constant may be represented by a name, say LABEL. For example, LABEL may correspond to the address of
some memory location. In that case, this address can be loaded into a register, Rd, using the pseudo-instruction

LDR Rd, =LABEL

Again, the Assembler will place the corresponding 32-bit address into the literal pool.
6.7 Shift and Rotate Instructions

ARM has shift and rotate instruction mnemonics:

* LSL — Logical Shift Left
* LSR — Logical Shift Right

ASR — Arithmetic Shift Right

ROR - Rotate Right
An example of a shift instruction is
LSL R2,RS5, #4

which shifts the value in R5 to the left by four bit-positions (zeros are inserted on the right) and places the result into
R2. Since Operand?2 of any instruction can be shifted or rotated, it is possible to use Move instructions mnemonics
instead of shift and rotate. For example, the instruction
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MOV R2, RS, LSL #4
is equivalent to the LSL instruction shown above. Also, the same effect can be achieved with the instruction
LSL R2,R5,R6

if the contents of R6 are equal to 4. There is also a logical shift right, LSR, instruction, in which bits are shifted to
the right with zeros being inserted on the left. Similarly, arithmetic shift right, ASR, performs a shift to the right, but
in this case the sign bit, b3y, is replicated on the left for each shift position. Another example is

ROR R3, R3, #8

which rotates the contents of R3 to the right by eight bit-positions. In the rofate instruction bits shifted out of position
by on the right are inserted into position b3; on the left, in a circular fashion.

6.8 Comparison Instructions

The comparison instructions compare the contents of two registers or the contents of a register and an immediate
value, and set the condition code flags based on the result.

The Compare instruction
CMP Rn, Operand?2

performs the comparison by subtracting the value of Operand?2 from the value in R#. It sets the condition code flags,
but it does not change the contents of Rn.

The Compare Negative instruction
CMN Rn, Operand?2

performs the comparison by adding the value of Operand2 and the value in R#. It sets the condition code flags, but
it does not change the contents of Rn.

6.9 Setting of Condition Code Flags

The condition code flags are always affected by the compare instructions, CMP and CMN, and the test instructions,
TST and TEQ. Many other instructions can also affect the condition code flags, but this must be specified in the
instruction. The data processing instructions (arithmetic, logic and move) affect these flags if the suffix S is appended
to the assembly-language OP-code mnemonic, as we mentioned in Section 6.3.1.

For example, the instruction
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ADDS R2,R3, R4

will set the flags, but

ADD R2,R3,R4

will not.

6.10 Conditional Execution of Instructions

Most ARM instructions can be executed conditionally. The high-order four bits in the machine representation of
each instruction, as illustrated in Figure 2, specify a condition that must be met for the instruction to be executed.
These conditions are associated with the condition code flags N, Z, C and V. The instruction is executed only if there
is a match between the specified condition and the current values of the condition code flags.

The general form of data processing instructions is

OP{S}{cond} Rd,Rn, Operand?2

The conditions that can be specified are those in Table 2. Observe that there are 14 patterns for conditions that
depend on the condition code flags.

For example, the instruction

ADDEQ R2,R3, R4

will be executed if the condition code flag Z is equal to 1. Otherwise, the execution will skip to the next instruction.

The instruction

MOVNE RI, RO

Will transfer the contents of RO into R1 if the current value of the Z flag is 0. If Z =1, the Move instruction will not
be executed and the processor will skip to the next instruction.

6.11 Branch Instructions

The flow of execution of a program can be changed by executing a Branch instruction. It may be changed either
conditionally or unconditionally.

A branch instruction is specified as
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B{cond_suffix} LABEL

where a suffix is appended to indicate the condition on which a branch is to be taken. The branch target is typically
specified as a label. Relative addressing mode is used to define the target address. A 24-bit 2’s-complement value
is given in the machine instruction to indicate the desired offset from the contents of the Program Counter, which is
computed by the Assembler. When the instruction is executed, this offset value is sign-extended to 32 bits. Then, the
resulting value is shifted left by two bit-positions because the branch target addresses are word-aligned. Finally, this
value is added to the updated contents of the Program Counter. Note that when any instruction is being executed,
the updated contents of PC will be the current contents of PC plus 8, because of the pipelined operation of the ARM
processor.

The branch instruction is executed conditionally, based on the current setting of the Condition Code flags. The
conditions that can be specified are given in Table 2. For example, the instruction

BEQ LABEL

causes a branch to location LABEL if the Condition Code flag Z is equal to one when the instruction is being
executed.

TABLE 2. Condition field encoding in ARM instructions

Condition Condition Condition Condition Code
field suffix name test
b31 cee bzg
0000 EQ Equal (zero) Z=1
0001 NE Not equal (nonzero) Z=0
0010 CS/HS Carry set/Unsigned higher or same C=1
0011 CC/LO Carry clear/Unsigned lower C=0
0100 MI Minus (negative) N=1
0101 PL Plus (positive or zero) N=0
0110 VS Overflow V=1
0111 vVC No overflow V=0
1000 HI Unsigned higher CVvZ=0
1001 LS Unsigned lower or same Cvz=1
1010 GE Signed greater than or equal NeV=0
1011 LT Signed less than NeV=1
1100 GT Signed greater than ZvV(NeV)=0
1101 LE Signed less than or equal Zv(NeV)=1
1110 AL Always
1111 not used
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The suffix AL (Always) causes the unconditional branch. The same effect is achieved if there is no suffix appended.
The Assembler interprets the instruction

B LABEL
as being the same as

BAL LABEL

6.12 Subroutine Linkage Instructions

Subroutine calls are achieved with the Branch and Link instruction
BL Destination

where the Destination is typically the label of the first instruction in the subroutine. In addition to behaving as a
Branch instruction, this instruction saves the return address (which is the address of the instruction that follows the
BL instruction) in the Link register, R14.

There is no specific return-from-subroutine instruction. The return from a subroutine can be performed by an in-
struction that loads the contents of R14 into R15, such as

MOV PC,LR

Since LR can hold only one return address, it follows that if nested subroutines are used it is necessary to save the
contents of R14, typically on the stack, prior to a nested subroutine call.

We should also mention that in the ARM environment, there is a convention that registers RO to R4 are used to pass
parameters to a subroutine, while register RO is used to return a result. If more than four parameters are needed, then
some of the parameters have to be passed via the stack.

7 Assembler Directives

Assembler directives provide information used by the assembler when assembling an application program. Different
assemblers often use different assembler directives. We will restrict our discussion to the assembler that is used by
the Altera Monitor Program. This assembler conforms to the widely used GNU Assembler, which is software
available in the public domain. Thus, the GNU Assembler directives can be used in ARM programs intended to be
used with the Altera Monitor Program.

Assembler directives begin with a period. We describe some of the more frequently used assembler directives below.
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.ascii "string"

A string of ASCII characters is loaded into consecutive byte addresses in the memory. Multiple strings, separated
by commas, can be specified. The directive .asciz is the same, except that each string is terminated by a zero byte.

.byte expressions

Expressions separated by commas are specified. Each expression is assembled into the next byte. Examples of
expressions are: 8, 5 + LABEL, and K — 6.

.end

Marks the end of the source code file; everything after this directive is ignored by the assembler.
.equ symbol, expression

Sets the value of symbol to expression.

.global symbol

Makes symbol visible outside the assembled object file.

hword expressions

Expressions separated by commas are specified. Each expression is assembled into a 16-bit number.
Ainclude "filename"

Provides a mechanism for including supporting files in a source program.

.section arguments

Allows a named section to be created in the assembly language file. This directive is used, for example, when
specifying exception vectors.

skip size
Emits the number of bytes specified in size; the value of each byte is zero.
Jtext

Identifies the code that should be placed in the text section of the memory. The desired memory location for the text
section can be specified in the Altera Monitor Program’s system configuration window.

.word expressions

Expressions separated by commas are specified. Each expression is assembled into a 32-bit number.
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8 Example Program

As an illustration of ARM instructions and assembler directives, Figure 3 gives an assembly-language program that
computes a dot product of two vectors, A and B. The vectors have n elements. The required computation is

Dot product = Y71 A() x B(i)

The vectors are stored in memory locations at addresses AVECTOR and BVECTOR, respectively. The number of
elements, 7, is stored in memory location N. The computed result is written into memory location DOTP. Each
vector element is assumed to be a signed 32-bit number.

The program includes some sample data. It illustrates how the .word assembler directive can be used to load data
items into memory. The memory locations involved are those that follow the location occupied by the Branch
instruction, B, which is the last instruction in the program. The execution of the program ends by continuously
looping on this instruction.

.text
.global _start
_start: LDR RO, =AVECTOR /* Register RO is a pointer to vector A. */
LDR R1, =BVECTOR /* Register R1 is a pointer to vector B. */
LDR R2,N /* Register R2 is used as the counter for loop iterations. */
MOV R3, #0 /* Register R3 is used to accumulate the product. */
LOOP: LDR R4, [RO], #4 /* Load the next element of vector A. */
LDR R5, [R1], #4 /* Load the next element of vector B. */
MLA R3, R4, R5, R3 /* Compute the product of next pair of elements, */
/* and add to the sum. */
SUBS R2, R2, #1 /* Decrement the counter. */
BGT LOOP /* Loop again if not finished. */
STR R3, DOTP /* Store the result in memory. */
STOP: B STOP
N: .word 6 /* Specify the number of elements. */
AVECTOR: .word 5,3,-6,19,8, 12 /* Specify the elements of vector A. */
BVECTOR: .word 2,14, -3,2, -5, 36 /* Specify the elements of vector B. */
DOTP: .Sspace 4 /* Space for the final dot product. */
.end

Figure 3. A program that computes the dot product of two vectors.

Observe the treatment of labels. In the instruction

LDR RO, =AVECTOR
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a 32-bit address that denotes the location AVECTOR is loaded into register R0, as explained in Section 6.6.1 But, in
the instruction

LDR R2,N

it is the value 6, which is stored at location N, that is loaded into register R2. In both cases, the assembled LDR
machine instruction will use Relative addressing to access the source operand.

9 Operating Modes

The ARM processor can operate in a number of different modes, as follows:

* User mode — is the basic mode in which application programs run. This is an unprivileged mode, which has
restricted access to system resources.

* System mode — provides full access to system resources. It can be entered only from one of the exception
modes listed below.

* Supervisor mode — is entered when a software interrupt is raised by a program executing a Supervisor Call
instruction, SVC. It is also entered on reset or power-up.

* Abort mode — is entered if a program attempts to access a non-existing memory location.
* Undefined mode — is entered if the processor attempts to execute an unimplemented instruction.
* IRQ mode — is entered in response to a normal interrupt request from an external device.

* FIQ mode — is entered in response to a fast interrupt request from an external device. It is used to provide
faster service for more urgent requests.

The User mode is unprivileged, and all other modes are privileged. In order to manipulate the contents of the
processor status register, the processor must be in one of the privileged modes. The User and System modes use
the registers presented in Figure 1. Other modes, which deal with various exceptions, use some other registers, as
described in the next section.

The current operating mode is indicated in the processor status bits CPSR4_, as specified in Table 3.
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TABLE 3. Operating Mode Assignment

CPSR;_y Operating Mode
10000 User

10001 FIQ

10010 IRQ

10011 Supervisor

10111 Abort

11011 Undefined

11111 System

10 Banked Registers

To make the processing of exceptions more efficient, some other registers are involved. These registers are shown in
blue in Figure 4. They are called the banked registers. There is a different set of banked registers for each exception
mode. All exception modes use their own versions of the Stack Pointer, SP_mode, the Link register, LR_mode, and
the Status register, SPSR_mode. The FIQ mode also has its own registers R8 to R12, which are called R8_fiq to

R12_fiq in the figure.
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User/System  Supervisor Abort Undefined IRQ FIQ
RO RO RO RO RO RO
R1 R1 R1 R1 R1 R1
R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4
R5 R5 R5 R5 RS R5
R6 R6 R6 R6 R6 R6
R7 R7 R7 R7 R7 R7
R8 R8 R8 R8 R8 R8_fiq
R9 R9 R9 R9 R9 R9 fiq
R10 R10 R10 R10 R10 R10 fiq
R11 R11 R11 R11 R11 R11 fiq
R12 R12 R12 R12 R12 R12 fiq
SP R13 R13 svc| | R13 abt| |R13 und| | R13.irq R13 fig
LR R14 R14 svc| | R14 abt| |R14 und| | R14.irq R14 fig
PC R15 R15 R15 R15 R15 R15
CPSR CPSR CPSR CPSR CPSR CPSR
SPSR_sve| |SPSR abt| [SPSR und| [SPSR irq| |SPSR fig

Figure 4. Registers used in various operating modes.

Note that registers RO to R12 are not banked in most operating modes. Thus, when an exception service routine
needs to use some of these registers, the contents of the registers must be saved on the stack and later restored.
However, having the five banked registers R8_fiq to R12_fiq in the FIQ mode, it is possible to respond very quickly
to a fast interrupt request if these registers are sufficient for the task that is implemented by the corresponding
interrupt-service routine.

In Figure 4 and in the above discussion we referred to the specific banked registers by appending a mode specifier,
e.g. R14_svc. In an assembly-language program such specifiers are not included, because the processor accesses the
desired banked register based on its current operating mode, as indicated by the processor-mode bits, CPSR4_.

In the Supervisor mode, the special Move instructions, MRS and MSR, can be used to access the processor status
registers CPSR and SPSR_svc. The instruction

MRS Rd, CPSR
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copies the contents of CPSR into register Rd. Writing into the status registers can be done by affecting one or more
fields of the register. The processor status registers have four fields of eight bits, identified by the field specifiers _f,
_s, _x and _c, which correspond to PSR3;_24, PSR23_16, PSRy5_g and PSR7_g, respectively. Thus, the instruction

MSR CPSR_c, Rd

copies the contents of Rd into CPSR7_q, which affects only the processor mode and interrupt disable bits. All bits
can be affected by the instruction

MSR CPSR_cxsf, Rd

We should note that the field specifiers must be used in the MSR instruction; otherwise, an error will occur at compile
time.

In an exception mode, such as IRQ, it is the banked saved status register that is accessed. Thus,
MRS Rd, SPSR

copies the contents of SPSR_irq into register Rd.

11 Exception Processing

An exception in the normal flow of program execution can be caused by:

* Software interrupt
* Hardware interrupt
* Attempted accessing of a nonexistent memory location

* Unimplemented instruction

The ARM Cortex-A9 processor uses a vectored exception scheme, in which there is a separate vector of information
assigned to each type of exception. This vector normally consists of an instruction that loads into the program
counter the address of the first instruction of the corresponding exception-service routine. The vectors are stored
in the exception vector table at pre-assigned locations. Table 4 gives the assignment of exception vectors in the
exception vector table. It also shows the priority levels for the various exceptions and the mode entered upon the
occurrence of an exception.
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TABLE 4. Exception Vector Table

Address Exception Priority Mode entered

0x000 Reset 1 Supervisor
0x004 Unimplemented instruction 6 Undefined
0x008 Software interrupt - Supervisor
0x00C Instruction access violation 5 Abort
0x010 Data access violation 2 Abort
0x018 IRQ 4 IRQ
0x01C FIQ 3 FIQ

When an exception occurs in the User mode, the ARM processor switches into the corresponding exception mode
and automatically performs the following actions:

» Saves the contents of the Program Counter in the banked Link register, LR_mode.

» Saves the contents of the processor status register, CPSR, in the banked status register, SPSR_mode.

* Changes the mode bits in CPSR to denote the exception mode, and sets the interrupt-disable bits, I and F,
accordingly.

Loads the Program Counter, PC, with a vector address for the exception that caused the action. At this address
in the exception table there is an instruction that is executed next.

11.1  Software Interrupt

A software interrupt, which is called a software exception in ARM literature, occurs when an SVC instruction is
encountered in a program. This instruction causes the processor to switch into Supervisor mode. The address of
the next instruction is saved in the banked register LR_svc and the contents of CPSR are saved in SPSR_svc. Then,
the address of entry 8 in the exception vector table is loaded into the Program Counter. A branch instruction at that
location leads to to the required exception-service routine.

Upon completion of the exception-service routine, a return to the interrupted program can be realized with the
instruction

MOVS PC,LR

Note that the suffix S in the OP-code mnemonic normally specifies that the Condition Code flags should be set.
However, when the destination register is PC, the suffix S causes the saved contents in register SPSR_mode, in this
case SPSR_svc, to be loaded into the processor status register CPSR. Since this instruction also loads the saved
return address into PC, a return to the interrupted program is completed.

A common use of the software interrupt is to transfer control to a different program, such as an operating system.
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11.2 Hardware Interrupts

Hardware interrupts can be raised by external sources, such as I/O devices, by asserting one of the processor’s
interrupt-request inputs, IRQ or FIQ. When the processor receives a hardware interrupt request, it enters the corre-
sponding exception mode to service the interrupt. It also saves the contents of PC and CPSR.

The saved contents of the PC are supposed to be the return address. However, this is not the case with the ARM
Cortex-A9 processor. This processor prefetches instructions for execution. While the current instruction is being
executed, the next instruction is prefetched and its processing is started. This means that the Program Counter
points to the instruction after the prefetched one. Namely, the updated contents of PC are the address of the current
instruction plus 8. Since the interrupt is serviced upon completion of the current instruction, the next prefetched
instruction is discarded and it must be executed upon return from the interrupt. Therefore, the address saved in the
link register must be decremented by 4 prior to returning to the interrupted program. This can be done by having

SUBS PC, LR, #4

as the last instruction in the exception-service routine. Note that the suffix S causes a proper return to the interrupted
program, as explained above.

11.2.1 IRQ Interrupts

Upon accepting an IRQ interrupt request, the processor saves the contents of CPSR in the SPSR_irq register, and it
saves the contents of PC in the link register LR_irq. It also sets the mode bits in CPSR to denote the IRQ exception
mode, and it sets the I bit to 1 to disable further IRQ interrupts. Then, it executes the instruction at location 0x018
of the exception vector table, which has to cause a branch that leads to the IRQ exception-service routine.

The return from the exception-service routine should be performed with the instruction

SUBS PC, LR, #4

11.2.2 FIQ Interrupts

An FIQ interrupt request is raised by a device that needs fast response. Upon accepting the request, the processor
saves the contents of CPSR in the SPSR_fiq register, and it saves the contents of PC in the link register LR_fiq. It
also sets the mode bits in CPSR to denote the FIQ exception mode, and it sets the F and I bits to 1 to disable further
interrupts. Then, it executes the instruction at location 0x01C of the exception vector table. Since this is the last
location in the exception vector table, it can actually hold the first instruction of the FIQ exception-service routine
(instead of an instruction that causes a branch to the FIQ exception-service routine), which speeds up the response
to the FIQ request.

In the FIQ mode there are five additional banked registers, R8_fiq to R12_fiq, which means that the exception-service
routine can use these registers without first having to save the contents of R8 to R12 on the stack. This leads to a
faster response.

The return from the exception-service routine should be performed with the instruction

Altera Corporation - University Program 25
May 2015


https://www.altera.com/support/training/university/overview.html

INTRODUCTION TO THE ARM® PROCESSOR USING ALTERA TOOLCHAIN For Quartus 11 15.0

SUBS PC, LR, #4

11.3  Unimplemented Instruction

This exception occurs when the processor encounters a valid instruction that is not implemented in hardware. The
exception-service routine may emulate the required operation in software.

The return from the exception-service routine should be performed with the instruction

SUBS PC, LR, #4

11.4 Instruction Access Violation
This exception occurs if the processor tries to access an instruction at a non-existing memory location.

The return from the exception-service routine should be performed with the instruction

SUBS PC, LR, #4

11,5 Data Access Violation
This exception occurs if the processor tries to access data at a non-existing memory location.

In this case, the return from the exception-service routine should be performed with the instruction

SUBS PC, LR, #8

11.6 Nested Interrupts

When two or more interrupts or exceptions occur at different priority levels, causing the processor to enter different
modes of operation, their servicing can proceed immediately because the banked registers in various modes are
used to save the critical information about the interrupted program. However, if multiple interrupts can occur at the
same priority level, typically multiple IRQ requests, then it is necessary to nest the exception-service routines. This
includes saving the contents of the banked link register, LR_mode, on the stack before enabling subsequent requests.
Before returning from the corresponding exception-service routine, the contents of the register must be restored.

11.7 Exception Processing Example

The following example shows how the exception vector table can be set up, and how the exception-service routines
can be organized. We will use a hardware IRQ interrupt as an example of an exception-service routine.
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As shown in Table 4, the exception vector table must occupy the fixed memory locations in the address range 0x000
to 0x01C. Each word in this table must be an instruction that causes the program execution to go to the corresponding
exception-service routine. This requires the program counter to be loaded with the address of the first instruction in
the exception-service routine. This can be accomplished with load instructions

LDR PC, =EXCEPTION_SERVICE_ROUTINE_NAME

Figure 5 illustrates the structure of the code that can be used.

.text

.global _start

LDR PC, =_start /* Go to the beginning of the MAIN program. */
LDR PC, =SERVICE_UND /* Unimplemented instruction. */

LDR PC, =SERVICE_SVC /* Software interrupt. */

LDR PC, =SERVICE_ABT_INST /* Failed instruction access. */
LDR PC, =SERVICE_ABT_DATA /* Failed data access. */

.word 0 /* Null entry for address 0x014. */
LDR PC, =SERVICE_IRQ /* Hardware IRQ interrupt. */
LDR PC, =SERVICE_FIQ /* Hardware FIQ interrupt. */

/* The main program. */
_start:

/* Service routine for IRQ interrupts. */
SERVICE_IRQ:

SUBS PC, LR, #4 /* Return to interrupted program. */

/* Service routine for software interrupts. */
SERVICE_SVC:

MOVS PC,LR /* Return to interrupted program. */

Figure 5. Code used to set up the exception processing.

Altera Corporation - University Program 27
May 2015


https://www.altera.com/support/training/university/overview.html

INTRODUCTION TO THE ARM® PROCESSOR USING ALTERA TOOLCHAIN For Quartus 11 15.0

Observe that 0x000 is inserted in address location 0x014, because this vector location is not allocated to servicing an
exception. Observe also that the return from the exception-service routines used as an example is done as explained
in sections 11.2 and 11.2.1.

12  Input/Output Operations

Most I/0 devices are accessed by means of their memory-mapped registers. When a program accesses such devices,
it is important that each access is made to an actual register. In a processor with a data cache, it is essential to ensure
that the cached data is not used instead of the current values in the I/O device registers. In effect, the data cache
has to be bypassed when reading or writing the registers in I/O devices. The ARM processor does not have separate
instructions for reading and writing the contents of I/O registers. Instead, all I/O devices must have their registers
mapped into a memory address region that will not be cached by the processor. This can be accomplished if the
processor data cache is disabled completely, or if the processor’s memory management unit (MMU) is set up such
that appropriate regions of memory are designated as non-cacheable. The procedure for setting up the MMU and
data cache is beyond the scope of this document.
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