
임베디드리눅스응용프로그래밍

Why use an Operating System?

 Device Drivers
 USB Device Drivers – Keyboard, Mouse, Bluetooth
 …

 Internet Protocol Stack
 Easily start using the Ethernet port

 Multi-threaded Applications

2

Typical ARM Cortex-A9 Boot Sequence

 Boot ROM
 Hard coded by Altera(Intel)
 Determines the boot source by reading the boot select pins

 Preloader
 In (1) Flash/SD Card or (2) FPGA
 Typically initializes the DDR3 SDRAM and HPS I/O pins

 Boot loader
 Loads and starts the operating system

3

Linux SD card Images

 Linux SD card images
 Preloader
 Bootloader
 Linux (kernel + Distribution)

 FPGA related drivers
 Automatically programs FPGA with prebuilt system

4

Using SD card Images

 step 1: Power Off the DE1-SoC
 step 2: Set MSEL to `b01010 on the DE1-SoC

 Enables ARM to be able to configure the FPGA

5

 Step 3: Insert Linux SD Card
 Step 4: Power On the DE1-SoC
 Step 5: Ensure the UART-to-USB is

Connected to the Host Computer
 (black cable)

 Step 6: Check Device Manager for COM
Port Settings (USB serial port)

6

 Step 7: Open Terminal Software (putty or teraterm)
 Step 8: Connection setup

 "Serial" connection
 USB serial port (COMn)
 baud rate : 115200

 Step 9: Save session(setup) for later use
 Step 10: Open(OK) Connection

7

Sample Program

 source code "helloworld.c"

 compile
gcc helloworld.c 또는 # gcc –o helloworld helloworld.c

 execute
./a.out 또는 # ./helloworld

8

Programming the FPGA

9

 Create the desired system using the Quartus software and
the Qsys System Integration Tool (이과목에포함되지않음)

 Copy the programming bitstream to Linux

 Then within Linux command line
 Disable the HPS-FPGA bridges
 Configure the FPGA with your bitstream
 Re-enable the bridges

The Default DE1-SoC Computer System

10

 The Linux distribution automatically programs the FPGA with
the DE1-SoC Computer System during boot

Virtual Addresses vs Physical Addresses

11

 Linux creates a virtual address space for programs

 FPGA peripheral are given physical addresses in Qsys

 Linux application program uses virtual addresses instead of physical
addresses

 Linux provides functions ‘mmap’ and 'munmap' for address mapping
 mmap - map virtual address space to physical addresses
 munmap - un-maps virtual addresses space

 하드웨어가맵핑된메모리장치 (/dev/mem)의일부주소영역을
가상주소로맵핑하여하드웨어제어가능
 메모리장치에대한가상주소맵핑은 root 권한이필요함

Exercise: Using FPGA Peripherals within Linux

12

 We will use the default DE1-SoC Computer system

 We will use the red LEDs and the slider switches

 The program copies the value of the switches to the LEDs

MMAP

13

#define HW_REGS_BASE (0xff200000)
#define HW_REGS_SPAN (0x00200000)
#define HW_REGS_MASK (HW_REGS_SPAN - 1)

// Open /dev/mem
if((fd = open("/dev/mem", (O_RDWR | O_SYNC))) == -1) {

printf("ERROR: could not open \"/dev/mem\"...\n");
return(1);

}

// get virtual addr that maps to physical
virtual_base = mmap(NULL, HW_REGS_SPAN, (PROT_READ | PROT_WRITE)

, MAP_SHARED, fd, HW_REGS_BASE);

if(virtual_base == MAP_FAILED) {
printf("ERROR: mmap() failed...\n");
close(fd);
return(1);

}

Using the Virtual Address

14

#define LED_PIO_BASE 0x0
#define SW_PIO_BASE 0x40

volatile unsigned int *h2p_lw_led_addr=NULL;
volatile unsigned int *h2p_lw_sw_addr=NULL;

// Get the address that maps to the LEDs
h2p_lw_led_addr=(unsigned int *)(virtual_base +

((LED_PIO_BASE) & (HW_REGS_MASK)));
h2p_lw_sw_addr=(unsigned int *)(virtual_base +

((SW_PIO_BASE) & (HW_REGS_MASK)));

while(!stop){
*h2p_lw_led_addr = *h2p_lw_sw_addr;

}

MUNMAP

15

if(munmap(virtual_base, HW_REGS_SPAN) != 0) {
printf("ERROR: munmap() failed...\n");
close(fd);
return(1);

}

close(fd);

Source Code

 source code "leds.c"

16

signal handler

17 18

