
Threads

4

THREADS, LIKE PROCESSES, ARE A MECHANISM TO ALLOW A PROGRAM to do more than
one thing at a time.As with processes, threads appear to run concurrently; the Linux
kernel schedules them asynchronously, interrupting each thread from time to time to
give others a chance to execute.

Conceptually, a thread exists within a process.Threads are a finer-grained unit of
execution than processes.When you invoke a program, Linux creates a new process
and in that process creates a single thread, which runs the program sequentially.That
thread can create additional threads; all these threads run the same program in the
same process, but each thread may be executing a different part of the program at any
given time.

We’ve seen how a program can fork a child process.The child process is initially
running its parent’s program, with its parent’s virtual memory, file descriptors, and so
on copied.The child process can modify its memory, close file descriptors, and the like
without affecting its parent, and vice versa.When a program creates another thread,
though, nothing is copied.The creating and the created thread share the same memory
space, file descriptors, and other system resources as the original. If one thread changes
the value of a variable, for instance, the other thread subsequently will see the modi-
fied value. Similarly, if one thread closes a file descriptor, other threads may not read

05 0430 CH04 5/22/01 10:21 AM Page 61

62 Chapter 4 Threads

from or write to that file descriptor. Because a process and all its threads can be exe-
cuting only one program at a time, if any thread inside a process calls one of the exec
functions, all the other threads are ended (the new program may, of course, create new
threads).

GNU/Linux implements the POSIX standard thread API (known as pthreads).All
thread functions and data types are declared in the header file <pthread.h>.The
pthread functions are not included in the standard C library. Instead, they are in
libpthread, so you should add -lpthread to the command line when you link your
program.

4.1 Thread Creation
Each thread in a process is identified by a thread ID.When referring to thread IDs in
C or C++ programs, use the type pthread_t.

Upon creation, each thread executes a thread function.This is just an ordinary func-
tion and contains the code that the thread should run.When the function returns, the
thread exits. On GNU/Linux, thread functions take a single parameter, of type void*,
and have a void* return type.The parameter is the thread argument: GNU/Linux passes
the value along to the thread without looking at it.Your program can use this parame-
ter to pass data to a new thread. Similarly, your program can use the return value to
pass data from an exiting thread back to its creator.

The pthread_create function creates a new thread.You provide it with the following:

1. A pointer to a pthread_t variable, in which the thread ID of the new thread is
stored.

2. A pointer to a thread attribute object.This object controls details of how the
thread interacts with the rest of the program. If you pass NULL as the thread
attribute, a thread will be created with the default thread attributes.Thread
attributes are discussed in Section 4.1.5,“Thread Attributes.”

3. A pointer to the thread function.This is an ordinary function pointer, of this
type:

void* (*) (void*)

4. A thread argument value of type void*. Whatever you pass is simply passed as
the argument to the thread function when the thread begins executing.

A call to pthread_create returns immediately, and the original thread continues exe-
cuting the instructions following the call. Meanwhile, the new thread begins executing
the thread function. Linux schedules both threads asynchronously, and your program
must not rely on the relative order in which instructions are executed in the two
threads.

05 0430 CH04 5/22/01 10:21 AM Page 62

634.1 Thread Creation

The program in Listing 4.1 creates a thread that prints x’s continuously to standard
error.After calling pthread_create, the main thread prints o’s continuously to standard
error.

Listing 4.1 (thread-create.c) Create a Thread

#include <pthread.h>
#include <stdio.h>

/* Prints x’s to stderr. The parameter is unused. Does not return. */

void* print_xs (void* unused)
{
while (1)
fputc (‘x’, stderr);

return NULL;
}

/* The main program. */

int main ()
{
pthread_t thread_id;
/* Create a new thread. The new thread will run the print_xs

function. */
pthread_create (&thread_id, NULL, &print_xs, NULL);
/* Print o’s continuously to stderr. */
while (1)
fputc (‘o’, stderr);

return 0;
}

Compile and link this program using the following code:
% cc -o thread-create thread-create.c -lpthread

Try running it to see what happens. Notice the unpredictable pattern of x’s and o’s as
Linux alternately schedules the two threads.

Under normal circumstances, a thread exits in one of two ways. One way, as illus-
trated previously, is by returning from the thread function.The return value from the
thread function is taken to be the return value of the thread.Alternately, a thread can
exit explicitly by calling pthread_exit.This function may be called from within the
thread function or from some other function called directly or indirectly by the thread
function.The argument to pthread_exit is the thread’s return value.

05 0430 CH04 5/22/01 10:21 AM Page 63

64 Chapter 4 Threads

4.1.1 Passing Data to Threads
The thread argument provides a convenient method of passing data to threads.
Because the type of the argument is void*, though, you can’t pass a lot of data directly
via the argument. Instead, use the thread argument to pass a pointer to some structure
or array of data. One commonly used technique is to define a structure for each
thread function, which contains the “parameters” that the thread function expects.

Using the thread argument, it’s easy to reuse the same thread function for many
threads.All these threads execute the same code, but on different data.

The program in Listing 4.2 is similar to the previous example.This one creates two
new threads, one to print x’s and the other to print o’s. Instead of printing infinitely,
though, each thread prints a fixed number of characters and then exits by returning
from the thread function.The same thread function, char_print, is used by both
threads, but each is configured differently using struct char_print_parms.

Listing 4.2 (thread-create2) Create Two Threads

#include <pthread.h>
#include <stdio.h>

/* Parameters to print_function. */

struct char_print_parms
{
/* The character to print. */
char character;
/* The number of times to print it. */
int count;

};

/* Prints a number of characters to stderr, as given by PARAMETERS,
which is a pointer to a struct char_print_parms. */

void* char_print (void* parameters)
{
/* Cast the cookie pointer to the right type. */
struct char_print_parms* p = (struct char_print_parms*) parameters;
int i;

for (i = 0; i < p->count; ++i)
fputc (p->character, stderr);

return NULL;
}

/* The main program. */

int main ()
{
pthread_t thread1_id;

05 0430 CH04 5/22/01 10:21 AM Page 64

654.1 Thread Creation

pthread_t thread2_id;
struct char_print_parms thread1_args;
struct char_print_parms thread2_args;

/* Create a new thread to print 30,000 ’x’s. */
thread1_args.character = ’x’;
thread1_args.count = 30000;
pthread_create (&thread1_id, NULL, &char_print, &thread1_args);

/* Create a new thread to print 20,000 o’s. */
thread2_args.character = ’o’;
thread2_args.count = 20000;
pthread_create (&thread2_id, NULL, &char_print, &thread2_args);

return 0;
}

But wait! The program in Listing 4.2 has a serious bug in it.The main thread (which
runs the main function) creates the thread parameter structures (thread1_args and
thread2_args) as local variables, and then passes pointers to these structures to the
threads it creates.What’s to prevent Linux from scheduling the three threads in such a
way that main finishes executing before either of the other two threads are done?
Nothing! But if this happens, the memory containing the thread parameter structures
will be deallocated while the other two threads are still accessing it.

4.1.2 Joining Threads
One solution is to force main to wait until the other two threads are done.What we
need is a function similar to wait that waits for a thread to finish instead of a process.
That function is pthread_join, which takes two arguments: the thread ID of the
thread to wait for, and a pointer to a void* variable that will receive the finished
thread’s return value. If you don’t care about the thread return value, pass NULL as the
second argument.

Listing 4.3 shows the corrected main function for the buggy example in Listing 4.2.
In this version, main does not exit until both of the threads printing x’s and o’s have
completed, so they are no longer using the argument structures.

Listing 4.3 Revised Main Function for thread-create2.c

int main ()
{
pthread_t thread1_id;
pthread_t thread2_id;
struct char_print_parms thread1_args;
struct char_print_parms thread2_args;

continues

05 0430 CH04 5/22/01 10:21 AM Page 65

66 Chapter 4 Threads

/* Create a new thread to print 30,000 x’s. */
thread1_args.character = ’x’;
thread1_args.count = 30000;
pthread_create (&thread1_id, NULL, &char_print, &thread1_args);

/* Create a new thread to print 20,000 o’s. */
thread2_args.character = ’o’;
thread2_args.count = 20000;
pthread_create (&thread2_id, NULL, &char_print, &thread2_args);

/* Make sure the first thread has finished. */
pthread_join (thread1_id, NULL);
/* Make sure the second thread has finished. */
pthread_join (thread2_id, NULL);

/* Now we can safely return. */
return 0;

}

The moral of the story: Make sure that any data you pass to a thread by reference is
not deallocated, even by a different thread, until you’re sure that the thread is done with
it.This is true both for local variables, which are deallocated when they go out of
scope, and for heap-allocated variables, which you deallocate by calling free (or using
delete in C++).

4.1.3 Thread Return Values
If the second argument you pass to pthread_join is non-null, the thread’s return value
will be placed in the location pointed to by that argument.The thread return value,
like the thread argument, is of type void*. If you want to pass back a single int or
other small number, you can do this easily by casting the value to void* and then
casting back to the appropriate type after calling pthread_join.1

The program in Listing 4.4 computes the nth prime number in a separate thread.
That thread returns the desired prime number as its thread return value.The main
thread, meanwhile, is free to execute other code. Note that the successive division
algorithm used in compute_prime is quite inefficient; consult a book on numerical
algorithims if you need to compute many prime numbers in your programs.

Listing 4.3 Continued

1. Note that this is not portable, and it’s up to you to make sure that your value can be cast
safely to void* and back without losing bits.

05 0430 CH04 5/22/01 10:21 AM Page 66

674.1 Thread Creation

Listing 4.4 (primes.c) Compute Prime Numbers in a Thread

#include <pthread.h>
#include <stdio.h>

/* Compute successive prime numbers (very inefficiently). Return the
Nth prime number, where N is the value pointed to by *ARG. */

void* compute_prime (void* arg)
{
int candidate = 2;
int n = *((int*) arg);

while (1) {
int factor;
int is_prime = 1;

/* Test primality by successive division. */
for (factor = 2; factor < candidate; ++factor)
if (candidate % factor == 0) {
is_prime = 0;
break;

}
/* Is this the prime number we’re looking for? */
if (is_prime) {
if (--n == 0)
/* Return the desired prime number as the thread return value. */
return (void*) candidate;

}
++candidate;

}
return NULL;

}

int main ()
{
pthread_t thread;
int which_prime = 5000;
int prime;

/* Start the computing thread, up to the 5,000th prime number. */
pthread_create (&thread, NULL, &compute_prime, &which_prime);
/* Do some other work here... */
/* Wait for the prime number thread to complete, and get the result. */
pthread_join (thread, (void*) &prime);
/* Print the largest prime it computed. */
printf(“The %dth prime number is %d.\n”, which_prime, prime);
return 0;

}

05 0430 CH04 5/22/01 10:21 AM Page 67

68 Chapter 4 Threads

4.1.4 More on Thread IDs
Occasionally, it is useful for a sequence of code to determine which thread is execut-
ing it.The pthread_self function returns the thread ID of the thread in which it is
called.This thread ID may be compared with another thread ID using the
pthread_equal function.

These functions can be useful for determining whether a particular thread ID
corresponds to the current thread. For instance, it is an error for a thread to call
pthread_join to join itself. (In this case, pthread_join would return the error code
EDEADLK.) To check for this beforehand, you might use code like this:

if (!pthread_equal (pthread_self (), other_thread))
pthread_join (other_thread, NULL);

4.1.5 Thread Attributes
Thread attributes provide a mechanism for fine-tuning the behavior of individual
threads. Recall that pthread_create accepts an argument that is a pointer to a thread
attribute object. If you pass a null pointer, the default thread attributes are used to
configure the new thread. However, you may create and customize a thread attribute
object to specify other values for the attributes.

To specify customized thread attributes, you must follow these steps:

1. Create a pthread_attr_t object.The easiest way is simply to declare an auto-
matic variable of this type.

2. Call pthread_attr_init, passing a pointer to this object.This initializes the
attributes to their default values.

3. Modify the attribute object to contain the desired attribute values.

4. Pass a pointer to the attribute object when calling pthread_create.

5. Call pthread_attr_destroy to release the attribute object.The pthread_attr_t
variable itself is not deallocated; it may be reinitialized with pthread_attr_init.

A single thread attribute object may be used to start several threads. It is not necessary
to keep the thread attribute object around after the threads have been created.

For most GNU/Linux application programming tasks, only one thread attribute is
typically of interest (the other available attributes are primarily for specialty real-time
programming).This attribute is the thread’s detach state.A thread may be created as a
joinable thread (the default) or as a detached thread.A joinable thread, like a process, is not
automatically cleaned up by GNU/Linux when it terminates. Instead, the thread’s exit
state hangs around in the system (kind of like a zombie process) until another thread
calls pthread_join to obtain its return value. Only then are its resources released.A
detached thread, in contrast, is cleaned up automatically when it terminates. Because a
detached thread is immediately cleaned up, another thread may not synchronize on its
completion by using pthread_join or obtain its return value.

05 0430 CH04 5/22/01 10:21 AM Page 68

694.2 Thread Cancellation

To set the detach state in a thread attribute object, use pthread_attr_setdetachstate.
The first argument is a pointer to the thread attribute object, and the second is the
desired detach state. Because the joinable state is the default, it is necessary to call this only
to create detached threads; pass PTHREAD_CREATE_DETACHED as the second argument.

The code in Listing 4.5 creates a detached thread by setting the detach state thread
attribute for the thread.

Listing 4.5 (detached.c) Skeleton Program That Creates a Detached Thread

#include <pthread.h>

void* thread_function (void* thread_arg)
{
/* Do work here... */

}

int main ()
{
pthread_attr_t attr;
pthread_t thread;

pthread_attr_init (&attr);
pthread_attr_setdetachstate (&attr, PTHREAD_CREATE_DETACHED);
pthread_create (&thread, &attr, &thread_function, NULL);
pthread_attr_destroy (&attr);

/* Do work here... */

/* No need to join the second thread. */
return 0;

}

Even if a thread is created in a joinable state, it may later be turned into a detached
thread.To do this, call pthread_detach. Once a thread is detached, it cannot be made
joinable again.

4.2 Thread Cancellation
Under normal circumstances, a thread terminates when it exits normally, either by
returning from its thread function or by calling pthread_exit. However, it is possible
for a thread to request that another thread terminate.This is called canceling a thread.

To cancel a thread, call pthread_cancel, passing the thread ID of the thread to be
canceled.A canceled thread may later be joined; in fact, you should join a canceled
thread to free up its resources, unless the thread is detached (see Section 4.1.5,“Thread
Attributes”).The return value of a canceled thread is the special value given by
PTHREAD_CANCELED.

05 0430 CH04 5/22/01 10:21 AM Page 69

70 Chapter 4 Threads

Often a thread may be in some code that must be executed in an all-or-nothing
fashion. For instance, the thread may allocate some resources, use them, and then deal-
locate them. If the thread is canceled in the middle of this code, it may not have the
opportunity to deallocate the resources, and thus the resources will be leaked.To
counter this possibility, it is possible for a thread to control whether and when it can
be canceled.

A thread may be in one of three states with regard to thread cancellation.
n The thread may be asynchronously cancelable.The thread may be canceled at any

point in its execution.
n The thread may be synchronously cancelable.The thread may be canceled, but not

at just any point in its execution. Instead, cancellation requests are queued, and
the thread is canceled only when it reaches specific points in its execution.

n A thread may be uncancelable.Attempts to cancel the thread are quietly ignored.

When initially created, a thread is synchronously cancelable.

4.2.1 Synchronous and Asynchronous Threads
An asynchronously cancelable thread may be canceled at any point in its execution.A
synchronously cancelable thread, in contrast, may be canceled only at particular places
in its execution.These places are called cancellation points.The thread will queue a can-
cellation request until it reaches the next cancellation point.

To make a thread asynchronously cancelable, use pthread_setcanceltype.This
affects the thread that actually calls the function.The first argument should be
PTHREAD_CANCEL_ASYNCHRONOUS to make the thread asynchronously cancelable, or
PTHREAD_CANCEL_DEFERRED to return it to the synchronously cancelable state.The sec-
ond argument, if not null, is a pointer to a variable that will receive the previous can-
cellation type for the thread.This call, for example, makes the calling thread
asynchronously cancelable.

pthread_setcanceltype (PTHREAD_CANCEL_ASYNCHRONOUS, NULL);

What constitutes a cancellation point, and where should these be placed? The most
direct way to create a cancellation point is to call pthread_testcancel.This does
nothing except process a pending cancellation in a synchronously cancelable thread.
You should call pthread_testcancel periodically during lengthy computations in a
thread function, at points where the thread can be canceled without leaking any
resources or producing other ill effects.

Certain other functions are implicitly cancellation points as well.These are listed on
the pthread_cancel man page. Note that other functions may use these functions
internally and thus will indirectly be cancellation points.

05 0430 CH04 5/22/01 10:21 AM Page 70

714.2 Thread Cancellation

4.2.2 Uncancelable Critical Sections
A thread may disable cancellation of itself altogether with the
pthread_setcancelstate function. Like pthread_setcanceltype, this affects the calling
thread.The first argument is PTHREAD_CANCEL_DISABLE to disable cancellation, or
PTHREAD_CANCEL_ENABLE to re-enable cancellation.The second argument, if not null,
points to a variable that will receive the previous cancellation state.This call, for
instance, disables thread cancellation in the calling thread.

pthread_setcancelstate (PTHREAD_CANCEL_DISABLE, NULL);

Using pthread_setcancelstate enables you to implement critical sections.A critical sec-
tion is a sequence of code that must be executed either in its entirety or not at all; in
other words, if a thread begins executing the critical section, it must continue until the
end of the critical section without being canceled.

For example, suppose that you’re writing a routine for a banking program that
transfers money from one account to another.To do this, you must add value to the
balance in one account and deduct the same value from the balance of another
account. If the thread running your routine happened to be canceled at just the wrong
time between these two operations, the program would have spuriously increased the
bank’s total deposits by failing to complete the transaction.To prevent this possibility,
place the two operations in a critical section.

You might implement the transfer with a function such as process_transaction,
shown in Listing 4.6.This function disables thread cancellation to start a critical sec-
tion before it modifies either account balance.

Listing 4.6 (critical-section.c) Protect a Bank Transaction with a Critical Section

#include <pthread.h>
#include <stdio.h>
#include <string.h>

/* An array of balances in accounts, indexed by account number. */

float* account_balances;

/* Transfer DOLLARS from account FROM_ACCT to account TO_ACCT. Return
0 if the transaction succeeded, or 1 if the balance FROM_ACCT is
too small. */

int process_transaction (int from_acct, int to_acct, float dollars)
{
int old_cancel_state;

/* Check the balance in FROM_ACCT. */
if (account_balances[from_acct] < dollars)
return 1;

continues

05 0430 CH04 5/22/01 10:21 AM Page 71

72 Chapter 4 Threads

/* Begin critical section. */
pthread_setcancelstate (PTHREAD_CANCEL_DISABLE, &old_cancel_state);
/* Move the money. */
account_balances[to_acct] += dollars;
account_balances[from_acct] -= dollars;
/* End critical section. */
pthread_setcancelstate (old_cancel_state, NULL);

return 0;
}

Note that it’s important to restore the old cancel state at the end of the critical section
rather than setting it unconditionally to PTHREAD_CANCEL_ENABLE.This enables you to
call the process_transaction function safely from within another critical section—in
that case, your function will leave the cancel state the same way it found it.

4.2.3 When to Use Thread Cancellation
In general, it’s a good idea not to use thread cancellation to end the execution of a
thread, except in unusual circumstances. During normal operation, a better strategy is
to indicate to the thread that it should exit, and then to wait for the thread to exit on
its own in an orderly fashion.We’ll discuss techniques for communicating with the
thread later in this chapter, and in Chapter 5,“Interprocess Communication.”

4.3 Thread-Specific Data
Unlike processes, all threads in a single program share the same address space.This
means that if one thread modifies a location in memory (for instance, a global vari-
able), the change is visible to all other threads.This allows multiple threads to operate
on the same data without the use interprocess communication mechanisms (which are
described in Chapter 5).

Each thread has its own call stack, however.This allows each thread to execute dif-
ferent code and to call and return from subroutines in the usual way.As in a single-
threaded program, each invocation of a subroutine in each thread has its own set of
local variables, which are stored on the stack for that thread.

Sometimes, however, it is desirable to duplicate a certain variable so that each
thread has a separate copy. GNU/Linux supports this by providing each thread with a
thread-specific data area.The variables stored in this area are duplicated for each thread,
and each thread may modify its copy of a variable without affecting other threads.
Because all threads share the same memory space, thread-specific data may not be
accessed using normal variable references. GNU/Linux provides special functions for
setting and retrieving values from the thread-specific data area.

Listing 4.6 Continued

05 0430 CH04 5/22/01 10:21 AM Page 72

734.3 Thread-Specific Data

You may create as many thread-specific data items as you want, each of type void*.
Each item is referenced by a key.To create a new key, and thus a new data item for
each thread, use pthread_key_create.The first argument is a pointer to a
pthread_key_t variable.That key value can be used by each thread to access its own
copy of the corresponding data item.The second argument to pthread_key_t is a
cleanup function. If you pass a function pointer here, GNU/Linux automatically calls
that function when each thread exits, passing the thread-specific value corresponding
to that key.This is particularly handy because the cleanup function is called even if the
thread is canceled at some arbitrary point in its execution. If the thread-specific value
is null, the thread cleanup function is not called. If you don’t need a cleanup function,
you may pass null instead of a function pointer.

After you’ve created a key, each thread can set its thread-specific value correspond-
ing to that key by calling pthread_setspecific.The first argument is the key, and the
second is the void* thread-specific value to store.To retrieve a thread-specific data
item, call pthread_getspecific, passing the key as its argument.

Suppose, for instance, that your application divides a task among multiple threads.
For audit purposes, each thread is to have a separate log file, in which progress mes-
sages for that thread’s tasks are recorded.The thread-specific data area is a convenient
place to store the file pointer for the log file for each individual thread.

Listing 4.7 shows how you might implement this.The main function in this sample
program creates a key to store the thread-specific file pointer and then stores it in
thread_log_key. Because this is a global variable, it is shared by all threads.When each
thread starts executing its thread function, it opens a log file and stores the file pointer
under that key. Later, any of these threads may call write_to_thread_log to write a
message to the thread-specific log file.That function retrieves the file pointer for the
thread’s log file from thread-specific data and writes the message.

Listing 4.7 (tsd.c) Per-Thread Log Files Implemented with Thread-Specific Data

#include <malloc.h>
#include <pthread.h>
#include <stdio.h>

/* The key used to associate a log file pointer with each thread. */
static pthread_key_t thread_log_key;

/* Write MESSAGE to the log file for the current thread. */

void write_to_thread_log (const char* message)
{
FILE* thread_log = (FILE*) pthread_getspecific (thread_log_key);
fprintf (thread_log, “%s\n”, message);

}

/* Close the log file pointer THREAD_LOG. */

void close_thread_log (void* thread_log)

continues

05 0430 CH04 5/22/01 10:21 AM Page 73

74 Chapter 4 Threads

{
fclose ((FILE*) thread_log);

}

void* thread_function (void* args)
{
char thread_log_filename[20];
FILE* thread_log;

/* Generate the filename for this thread’s log file. */
sprintf (thread_log_filename, “thread%d.log”, (int) pthread_self ());
/* Open the log file. */
thread_log = fopen (thread_log_filename, “w”);
/* Store the file pointer in thread-specific data under thread_log_key. */
pthread_setspecific (thread_log_key, thread_log);

write_to_thread_log (“Thread starting.”);
/* Do work here... */

return NULL;
}

int main ()
{
int i;
pthread_t threads[5];

/* Create a key to associate thread log file pointers in
thread-specific data. Use close_thread_log to clean up the file
pointers. */

pthread_key_create (&thread_log_key, close_thread_log);
/* Create threads to do the work. */
for (i = 0; i < 5; ++i)
pthread_create (&(threads[i]), NULL, thread_function, NULL);

/* Wait for all threads to finish. */
for (i = 0; i < 5; ++i)
pthread_join (threads[i], NULL);

return 0;
}

Observe that thread_function does not need to close the log file.That’s because when
the log file key was created, close_thread_log was specified as the cleanup function
for that key.Whenever a thread exits, GNU/Linux calls that function, passing the
thread-specific value for the thread log key.This function takes care of closing the
log file.

Listing 4.7 Continued

05 0430 CH04 5/22/01 10:21 AM Page 74

754.3 Thread-specific Data

4.3.1 Cleanup Handlers
The cleanup functions for thread-specific data keys can be very handy for ensuring
that resources are not leaked when a thread exits or is canceled. Sometimes, though,
it’s useful to be able to specify cleanup functions without creating a new thread-
specific data item that’s duplicated for each thread. GNU/Linux provides cleanup
handlers for this purpose.

A cleanup handler is simply a function that should be called when a thread exits.
The handler takes a single void* parameter, and its argument value is provided when
the handler is registered—this makes it easy to use the same handler function to deal-
locate multiple resource instances.

A cleanup handler is a temporary measure, used to deallocate a resource only if the
thread exits or is canceled instead of finishing execution of a particular region of code.
Under normal circumstances, when the thread does not exit and is not canceled, the
resource should be deallocated explicitly and the cleanup handler should be removed.

To register a cleanup handler, call pthread_cleanup_push, passing a pointer
to the cleanup function and the value of its void* argument.The call to
pthread_cleanup_push must be balanced by a corresponding call to
pthread_cleanup_pop, which unregisters the cleanup handler.As a convenience,
pthread_cleanup_pop takes an int flag argument; if the flag is nonzero, the cleanup
action is actually performed as it is unregistered.

The program fragment in Listing 4.8 shows how you might use a cleanup handler
to make sure that a dynamically allocated buffer is cleaned up if the thread terminates.

Listing 4.8 (cleanup.c) Program Fragment Demonstrating a Thread
Cleanup Handler

#include <malloc.h>
#include <pthread.h>

/* Allocate a temporary buffer. */

void* allocate_buffer (size_t size)
{
return malloc (size);

}

/* Deallocate a temporary buffer. */

void deallocate_buffer (void* buffer)
{
free (buffer);

}

void do_some_work ()
{
/* Allocate a temporary buffer. */

continues

05 0430 CH04 5/22/01 10:21 AM Page 75

76 Chapter 4 Threads

void* temp_buffer = allocate_buffer (1024);
/* Register a cleanup handler for this buffer, to deallocate it in

case the thread exits or is cancelled. */
pthread_cleanup_push (deallocate_buffer, temp_buffer);

/* Do some work here that might call pthread_exit or might be
cancelled... */

/* Unregister the cleanup handler. Because we pass a nonzero value,
this actually performs the cleanup by calling
deallocate_buffer. */

pthread_cleanup_pop (1);
}

Because the argument to pthread_cleanup_pop is nonzero in this case, the cleanup
function deallocate_buffer is called automatically here and does not need to be
called explicitly. In this simple case, we could have used the standard library function
free directly as our cleanup handler function instead of deallocate_buffer.

4.3.2 Thread Cleanup in C++
C++ programmers are accustomed to getting cleanup “for free” by wrapping cleanup
actions in object destructors.When the objects go out of scope, either because a block
is executed to completion or because an exception is thrown, C++ makes sure that
destructors are called for those automatic variables that have them.This provides a
handy mechanism to make sure that cleanup code is called no matter how the block is
exited.

If a thread calls pthread_exit, though, C++ doesn’t guarantee that destructors are
called for all automatic variables on the thread’s stack.A clever way to recover this
functionality is to invoke pthread_exit at the top level of the thread function by
throwing a special exception.

The program in Listing 4.9 demonstrates this. Using this technique, a function indi-
cates its intention to exit the thread by throwing a ThreadExitException instead of
calling pthread_exit directly. Because the exception is caught in the top-level thread
function, all local variables on the thread’s stack will be destroyed properly as the
exception percolates up.

Listing 4.9 (cxx-exit.cpp) Implementing Safe Thread Exit with C++ Exceptions

#include <pthread.h>

class ThreadExitException
{
public:
/* Create an exception-signaling thread exit with RETURN_VALUE. */
ThreadExitException (void* return_value)
: thread_return_value_ (return_value)

Listing 4.8 Continued

05 0430 CH04 5/22/01 10:21 AM Page 76

774.4 Synchronization and Critical Sections

{
}

/* Actually exit the thread, using the return value provided in the
constructor. */

void* DoThreadExit ()
{
pthread_exit (thread_return_value_);

}

private:
/* The return value that will be used when exiting the thread. */
void* thread_return_value_;

};

void do_some_work ()
{
while (1) {
/* Do some useful things here... */

if (should_exit_thread_immediately ())
throw ThreadExitException (/* thread’s return value = */ NULL);

}
}

void* thread_function (void*)
{
try {
do_some_work ();

}
catch (ThreadExitException ex) {
/* Some function indicated that we should exit the thread. */
ex.DoThreadExit ();

}
return NULL;

}

4.4 Synchronization and Critical Sections
Programming with threads is very tricky because most threaded programs are concur-
rent programs. In particular, there’s no way to know when the system will schedule
one thread to run and when it will run another. One thread might run for a very
long time, or the system might switch among threads very quickly. On a system with
multiple processors, the system might even schedule multiple threads to run at literally
the same time.

Debugging a threaded program is difficult because you cannot always easily repro-
duce the behavior that caused the problem.You might run the program once and have
everything work fine; the next time you run it, it might crash.There’s no way to make
the system schedule the threads exactly the same way it did before.

05 0430 CH04 5/22/01 10:21 AM Page 77

78 Chapter 4 Threads

The ultimate cause of most bugs involving threads is that the threads are accessing
the same data.As mentioned previously, that’s one of the powerful aspects of threads,
but it can also be dangerous. If one thread is only partway through updating a data
structure when another thread accesses the same data structure, chaos is likely to
ensue. Often, buggy threaded programs contain a code that will work only if one
thread gets scheduled more often—or sooner—than another thread.These bugs are
called race conditions; the threads are racing one another to change the same data
structure.

4.4.1 Race Conditions
Suppose that your program has a series of queued jobs that are processed by several
concurrent threads.The queue of jobs is represented by a linked list of struct job
objects.

After each thread finishes an operation, it checks the queue to see if an additional
job is available. If job_queue is non-null, the thread removes the head of the linked list
and sets job_queue to the next job on the list.

The thread function that processes jobs in the queue might look like Listing 4.10.

Listing 4.10 (job-queue1.c) Thread Function to Process Jobs from the Queue

#include <malloc.h>

struct job {
/* Link field for linked list. */
struct job* next;

/* Other fields describing work to be done... */
};

/* A linked list of pending jobs. */
struct job* job_queue;

/* Process queued jobs until the queue is empty. */

void* thread_function (void* arg)
{
while (job_queue != NULL) {
/* Get the next available job. */
struct job* next_job = job_queue;
/* Remove this job from the list. */
job_queue = job_queue->next;
/* Carry out the work. */
process_job (next_job);
/* Clean up. */
free (next_job);

}
return NULL;

}

05 0430 CH04 5/22/01 10:21 AM Page 78

794.4 Synchronization and Critical Sections

Now suppose that two threads happen to finish a job at about the same time, but only
one job remains in the queue.The first thread checks whether job_queue is null; find-
ing that it isn’t, the thread enters the loop and stores the pointer to the job object in
next_job.At this point, Linux happens to interrupt the first thread and schedules the
second.The second thread also checks job_queue and finding it non-null, also assigns
the same job pointer to next_job. By unfortunate coincidence, we now have two
threads executing the same job.

To make matters worse, one thread will unlink the job object from the queue,
leaving job_queue containing null.When the other thread evaluates job_queue->next,
a segmentation fault will result.

This is an example of a race condition. Under “lucky” circumstances, this particular
schedule of the two threads may never occur, and the race condition may never
exhibit itself. Only under different circumstances, perhaps when running on a heavily
loaded system (or on an important customer’s new multiprocessor server!) may the
bug exhibit itself.

To eliminate race conditions, you need a way to make operations atomic.An atomic
operation is indivisible and uninterruptible; once the operation starts, it will not be
paused or interrupted until it completes, and no other operation will take place mean-
while. In this particular example, you want to check job_queue; if it’s not empty,
remove the first job, all as a single atomic operation.

4.4.2 Mutexes
The solution to the job queue race condition problem is to let only one thread access
the queue of jobs at a time. Once a thread starts looking at the queue, no other thread
should be able to access it until the first thread has decided whether to process a job
and, if so, has removed the job from the list.

Implementing this requires support from the operating system. GNU/Linux pro-
vides mutexes, short for MUTual EXclusion locks.A mutex is a special lock that only one
thread may lock at a time. If a thread locks a mutex and then a second thread also tries
to lock the same mutex, the second thread is blocked, or put on hold. Only when the
first thread unlocks the mutex is the second thread unblocked—allowed to resume
execution. GNU/Linux guarantees that race conditions do not occur among threads
attempting to lock a mutex; only one thread will ever get the lock, and all other
threads will be blocked.

Think of a mutex as the lock on a lavatory door.Whoever gets there first enters the
lavatory and locks the door. If someone else attempts to enter the lavatory while it’s
occupied, that person will find the door locked and will be forced to wait outside
until the occupant emerges.

To create a mutex, create a variable of type pthread_mutex_t and pass a pointer to
it to pthread_mutex_init.The second argument to pthread_mutex_init is a pointer
to a mutex attribute object, which specifies attributes of the mutex.As with

05 0430 CH04 5/22/01 10:21 AM Page 79

80 Chapter 4 Threads

pthread_create, if the attribute pointer is null, default attributes are assumed.The
mutex variable should be initialized only once.This code fragment demonstrates the
declaration and initialization of a mutex variable.

pthread_mutex_t mutex;
pthread_mutex_init (&mutex, NULL);

Another simpler way to create a mutex with default attributes is to initialize it
with the special value PTHREAD_MUTEX_INITIALIZER. No additional call to
pthread_mutex_init is necessary.This is particularly convenient for global variables
(and, in C++, static data members).The previous code fragment could equivalently
have been written like this:

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

A thread may attempt to lock a mutex by calling pthread_mutex_lock on it. If the
mutex was unlocked, it becomes locked and the function returns immediately. If the
mutex was locked by another thread, pthread_mutex_lock blocks execution and
returns only eventually when the mutex is unlocked by the other thread. More than
one thread may be blocked on a locked mutex at one time.When the mutex is
unlocked, only one of the blocked threads (chosen unpredictably) is unblocked and
allowed to lock the mutex; the other threads stay blocked.

A call to pthread_mutex_unlock unlocks a mutex.This function should always be
called from the same thread that locked the mutex.

Listing 4.11 shows another version of the job queue example. Now the queue is
protected by a mutex. Before accessing the queue (either for read or write), each
thread locks a mutex first. Only when the entire sequence of checking the queue and
removing a job is complete is the mutex unlocked.This prevents the race condition
previously described.

Listing 4.11 (job-queue2.c) Job Queue Thread Function, Protected by a Mutex

#include <malloc.h>
#include <pthread.h>

struct job {
/* Link field for linked list. */
struct job* next;

/* Other fields describing work to be done... */
};

/* A linked list of pending jobs. */
struct job* job_queue;

/* A mutex protecting job_queue. */
pthread_mutex_t job_queue_mutex = PTHREAD_MUTEX_INITIALIZER;

05 0430 CH04 5/22/01 10:21 AM Page 80

814.4 Synchronization and Critical Sections

/* Process queued jobs until the queue is empty. */

void* thread_function (void* arg)
{
while (1) {
struct job* next_job;

/* Lock the mutex on the job queue. */
pthread_mutex_lock (&job_queue_mutex);
/* Now it’s safe to check if the queue is empty. */
if (job_queue == NULL)
next_job = NULL;

else {
/* Get the next available job. */
next_job = job_queue;
/* Remove this job from the list. */
job_queue = job_queue->next;

}
/* Unlock the mutex on the job queue because we’re done with the

queue for now. */
pthread_mutex_unlock (&job_queue_mutex);

/* Was the queue empty? If so, end the thread. */
if (next_job == NULL)
break;

/* Carry out the work. */
process_job (next_job);
/* Clean up. */
free (next_job);

}
return NULL;

}

All accesses to job_queue, the shared data pointer, come between the call to
pthread_mutex_lock and the call to pthread_mutex_unlock.A job object, stored in
next_job, is accessed outside this region only after that object has been removed from
the queue and is therefore inaccessible to other threads.

Note that if the queue is empty (that is, job_queue is null), we don’t break out of
the loop immediately because this would leave the mutex permanently locked and
would prevent any other thread from accessing the job queue ever again. Instead, we
remember this fact by setting next_job to null and breaking out only after unlocking
the mutex.

Use of the mutex to lock job_queue is not automatic; it’s up to you to add code to
lock the mutex before accessing that variable and then to unlock it afterward. For
example, a function to add a job to the job queue might look like this:

void enqueue_job (struct job* new_job)
{
pthread_mutex_lock (&job_queue_mutex);

05 0430 CH04 5/22/01 10:21 AM Page 81

82 Chapter 4 Threads

new_job->next = job_queue;
job_queue = new_job;
pthread_mutex_unlock (&job_queue_mutex);

}

4.4.3 Mutex Deadlocks
Mutexes provide a mechanism for allowing one thread to block the execution of
another.This opens up the possibility of a new class of bugs, called deadlocks.A dead-
lock occurs when one or more threads are stuck waiting for something that never will
occur.

A simple type of deadlock may occur when the same thread attempts to lock a
mutex twice in a row.The behavior in this case depends on what kind of mutex is
being used.Three kinds of mutexes exist:

n Locking a fast mutex (the default kind) will cause a deadlock to occur.An
attempt to lock the mutex blocks until the mutex is unlocked. But because the
thread that locked the mutex is blocked on the same mutex, the lock cannot
ever be released.

n Locking a recursive mutex does not cause a deadlock.A recursive mutex may
safely be locked many times by the same thread.The mutex remembers how
many times pthread_mutex_lock was called on it by the thread that holds the
lock; that thread must make the same number of calls to pthread_mutex_unlock
before the mutex is actually unlocked and another thread is allowed to lock it.

n GNU/Linux will detect and flag a double lock on an error-checking mutex that
would otherwise cause a deadlock.The second consecutive call to
pthread_mutex_lock returns the failure code EDEADLK.

By default, a GNU/Linux mutex is of the fast kind.To create a mutex of one
of the other two kinds, first create a mutex attribute object by declaring a
pthread_mutexattr_t variable and calling pthread_mutexattr_init on a
pointer to it.Then set the mutex kind by calling pthread_mutexattr_setkind_np; the
first argument is a pointer to the mutex attribute object, and the second is
PTHREAD_MUTEX_RECURSIVE_NP for a recursive mutex, or PTHREAD_MUTEX_ERRORCHECK_NP
for an error-checking mutex. Pass a pointer to this attribute object to
pthread_mutex_init to create a mutex of this kind, and then destroy the attribute
object with pthread_mutexattr_destroy.

This code sequence illustrates creation of an error-checking mutex, for instance:
pthread_mutexattr_t attr;
pthread_mutex_t mutex;

pthread_mutexattr_init (&attr);
pthread_mutexattr_setkind_np (&attr, PTHREAD_MUTEX_ERRORCHECK_NP);
pthread_mutex_init (&mutex, &attr);
pthread_mutexattr_destroy (&attr);

05 0430 CH04 5/22/01 10:21 AM Page 82

834.4 Synchronization and Critical Sections

As suggested by the “np” suffix, the recursive and error-checking mutex kinds are spe-
cific to GNU/Linux and are not portable.Therefore, it is generally not advised to use
them in programs. (Error-checking mutexes can be useful when debugging, though.)

4.4.4 Nonblocking Mutex Tests
Occasionally, it is useful to test whether a mutex is locked without actually blocking
on it. For instance, a thread may need to lock a mutex but may have other work to do
instead of blocking if the mutex is already locked. Because pthread_mutex_lock will
not return until the mutex becomes unlocked, some other function is necessary.

GNU/Linux provides pthread_mutex_trylock for this purpose. If you call
pthread_mutex_trylock on an unlocked mutex, you will lock the mutex as if you had
called pthread_mutex_lock, and pthread_mutex_trylock will return zero. However, if
the mutex is already locked by another thread, pthread_mutex_trylock will not block.
Instead, it will return immediately with the error code EBUSY.The mutex lock held by
the other thread is not affected.You may try again later to lock the mutex.

4.4.5 Semaphores for Threads
In the preceding example, in which several threads process jobs from a queue, the
main thread function of the threads carries out the next job until no jobs are left and
then exits the thread.This scheme works if all the jobs are queued in advance or if
new jobs are queued at least as quickly as the threads process them. However, if the
threads work too quickly, the queue of jobs will empty and the threads will exit. If
new jobs are later enqueued, no threads may remain to process them.What we might
like instead is a mechanism for blocking the threads when the queue empties until
new jobs become available.

A semaphore provides a convenient method for doing this.A semaphore is a counter
that can be used to synchronize multiple threads.As with a mutex, GNU/Linux guar-
antees that checking or modifying the value of a semaphore can be done safely, with-
out creating a race condition.

Each semaphore has a counter value, which is a non-negative integer.A semaphore
supports two basic operations:

n A wait operation decrements the value of the semaphore by 1. If the value is
already zero, the operation blocks until the value of the semaphore becomes
positive (due to the action of some other thread).When the semaphore’s value
becomes positive, it is decremented by 1 and the wait operation returns.

n A post operation increments the value of the semaphore by 1. If the semaphore
was previously zero and other threads are blocked in a wait operation on that
semaphore, one of those threads is unblocked and its wait operation completes
(which brings the semaphore’s value back to zero).

05 0430 CH04 5/22/01 10:21 AM Page 83

84 Chapter 4 Threads

Note that GNU/Linux provides two slightly different semaphore implementations.
The one we describe here is the POSIX standard semaphore implementation. Use
these semaphores when communicating among threads The other implementation,
used for communication among processes, is described in Section 5.2,“Process
Semaphores.” If you use semaphores, include <semaphore.h>.

A semaphore is represented by a sem_t variable. Before using it, you must initialize
it using the sem_init function, passing a pointer to the sem_t variable.The second
parameter should be zero,2 and the third parameter is the semaphore’s initial value. If
you no longer need a semaphore, it’s good to deallocate it with sem_destroy.

To wait on a semaphore, use sem_wait.To post to a semaphore, use sem_post.
A nonblocking wait function, sem_trywait, is also provided. It’s similar to
pthread_mutex_trylock—if the wait would have blocked because the semaphore’s
value was zero, the function returns immediately, with error value EAGAIN, instead of
blocking.

GNU/Linux also provides a function to retrieve the current value of a semaphore,
sem_getvalue, which places the value in the int variable pointed to by its second
argument.You should not use the semaphore value you get from this function to make
a decision whether to post to or wait on the semaphore, though.To do this could lead
to a race condition:Another thread could change the semaphore’s value between the
call to sem_getvalue and the call to another semaphore function. Use the atomic post
and wait functions instead.

Returning to our job queue example, we can use a semaphore to count the num-
ber of jobs waiting in the queue. Listing 4.12 controls the queue with a semaphore.
The function enqueue_job adds a new job to the queue.

Listing 4.12 (job-queue3.c) Job Queue Controlled by a Semaphore

#include <malloc.h>
#include <pthread.h>
#include <semaphore.h>

struct job {
/* Link field for linked list. */
struct job* next;

/* Other fields describing work to be done... */
};

/* A linked list of pending jobs. */
struct job* job_queue;

/* A mutex protecting job_queue. */
pthread_mutex_t job_queue_mutex = PTHREAD_MUTEX_INITIALIZER;

2.A nonzero value would indicate a semaphore that can be shared across processes, which is
not supported by GNU/Linux for this type of semaphore.

05 0430 CH04 5/22/01 10:21 AM Page 84

854.4 Synchronization and Critical Sections

/* A semaphore counting the number of jobs in the queue. */
sem_t job_queue_count;

/* Perform one-time initialization of the job queue. */

void initialize_job_queue ()
{
/* The queue is initially empty. */
job_queue = NULL;
/* Initialize the semaphore which counts jobs in the queue. Its

initial value should be zero. */
sem_init (&job_queue_count, 0, 0);

}

/* Process queued jobs until the queue is empty. */

void* thread_function (void* arg)
{
while (1) {
struct job* next_job;

/* Wait on the job queue semaphore. If its value is positive,
indicating that the queue is not empty, decrement the count by
1. If the queue is empty, block until a new job is enqueued. */

sem_wait (&job_queue_count);

/* Lock the mutex on the job queue. */
pthread_mutex_lock (&job_queue_mutex);
/* Because of the semaphore, we know the queue is not empty. Get

the next available job. */
next_job = job_queue;
/* Remove this job from the list. */
job_queue = job_queue->next;
/* Unlock the mutex on the job queue because we’re done with the

queue for now. */
pthread_mutex_unlock (&job_queue_mutex);

/* Carry out the work. */
process_job (next_job);
/* Clean up. */
free (next_job);

}
return NULL;

}

/* Add a new job to the front of the job queue. */

void enqueue_job (/* Pass job-specific data here... */)
{
struct job* new_job;

continues

05 0430 CH04 5/22/01 10:21 AM Page 85

86 Chapter 4 Threads

/* Allocate a new job object. */
new_job = (struct job*) malloc (sizeof (struct job));
/* Set the other fields of the job struct here... */

/* Lock the mutex on the job queue before accessing it. */
pthread_mutex_lock (&job_queue_mutex);
/* Place the new job at the head of the queue. */
new_job->next = job_queue;
job_queue = new_job;

/* Post to the semaphore to indicate that another job is available. If
threads are blocked, waiting on the semaphore, one will become
unblocked so it can process the job. */

sem_post (&job_queue_count);

/* Unlock the job queue mutex. */
pthread_mutex_unlock (&job_queue_mutex);

}

Before taking a job from the front of the queue, each thread will first wait on the
semaphore. If the semaphore’s value is zero, indicating that the queue is empty, the
thread will simply block until the semaphore’s value becomes positive, indicating that a
job has been added to the queue.

The enqueue_job function adds a job to the queue. Just like thread_function, it
needs to lock the queue mutex before modifying the queue.After adding a job to the
queue, it posts to the semaphore, indicating that a new job is available. In the version
shown in Listing 4.12, the threads that process the jobs never exit; if no jobs are avail-
able for a while, all the threads simply block in sem_wait.

4.4.6 Condition Variables
We’ve shown how to use a mutex to protect a variable against simultaneous access by
two threads and how to use semaphores to implement a shared counter.A condition
variable is a third synchronization device that GNU/Linux provides; with it, you can
implement more complex conditions under which threads execute.

Suppose that you write a thread function that executes a loop infinitely, performing
some work on each iteration.The thread loop, however, needs to be controlled by a
flag:The loop runs only when the flag is set; when the flag is not set, the loop pauses.

Listing 4.13 shows how you might implement this by spinning in a loop. During
each iteration of the loop, the thread function checks that the flag is set. Because the
flag is accessed by multiple threads, it is protected by a mutex.This implementation
may be correct, but it is not efficient.The thread function will spend lots of CPU

Listing 4.12 Continued

05 0430 CH04 5/22/01 10:21 AM Page 86

874.4 Synchronization and Critical Sections

whenever the flag is not set, checking and rechecking the flag, each time locking and
unlocking the mutex.What you really want is a way to put the thread to sleep when
the flag is not set, until some circumstance changes that might cause the flag to
become set.

Listing 4.13 (spin-condvar.c) A Simple Condition Variable Implementation

#include <pthread.h>

int thread_flag;
pthread_mutex_t thread_flag_mutex;

void initialize_flag ()
{
pthread_mutex_init (&thread_flag_mutex, NULL);
thread_flag = 0;

}

/* Calls do_work repeatedly while the thread flag is set; otherwise
spins. */

void* thread_function (void* thread_arg)
{
while (1) {
int flag_is_set;

/* Protect the flag with a mutex lock. */
pthread_mutex_lock (&thread_flag_mutex);
flag_is_set = thread_flag;
pthread_mutex_unlock (&thread_flag_mutex);

if (flag_is_set)
do_work ();

/* Else don’t do anything. Just loop again. */
}
return NULL;

}

/* Sets the value of the thread flag to FLAG_VALUE. */

void set_thread_flag (int flag_value)
{
/* Protect the flag with a mutex lock. */
pthread_mutex_lock (&thread_flag_mutex);
thread_flag = flag_value;
pthread_mutex_unlock (&thread_flag_mutex);

}

05 0430 CH04 5/22/01 10:21 AM Page 87

88 Chapter 4 Threads

A condition variable enables you to implement a condition under which a thread exe-
cutes and, inversely, the condition under which the thread is blocked.As long as every
thread that potentially changes the sense of the condition uses the condition variable
properly, Linux guarantees that threads blocked on the condition will be unblocked
when the condition changes.

As with a semaphore, a thread may wait on a condition variable. If thread A waits
on a condition variable, it is blocked until some other thread, thread B, signals the
same condition variable. Unlike a semaphore, a condition variable has no counter or
memory; thread A must wait on the condition variable before thread B signals it. If
thread B signals the condition variable before thread A waits on it, the signal is lost,
and thread A blocks until some other thread signals the condition variable again.

This is how you would use a condition variable to make the previous sample more
efficient:

n The loop in thread_function checks the flag. If the flag is not set, the thread
waits on the condition variable.

n The set_thread_flag function signals the condition variable after changing the
flag value.That way, if thread_function is blocked on the condition variable, it
will be unblocked and will check the condition again.

There’s one problem with this:There’s a race condition between checking the
flag value and signaling or waiting on the condition variable. Suppose that
thread_function checked the flag and found that it was not set.At that moment, the
Linux scheduler paused that thread and resumed the main one. By some coincidence,
the main thread is in set_thread_flag. It sets the flag and then signals the condition
variable. Because no thread is waiting on the condition variable at the time (remember
that thread_function was paused before it could wait on the condition variable), the
signal is lost. Now, when Linux reschedules the other thread, it starts waiting on the
condition variable and may end up blocked forever.

To solve this problem, we need a way to lock the flag and the condition variable
together with a single mutex. Fortunately, GNU/Linux provides exactly this mecha-
nism. Each condition variable must be used in conjunction with a mutex, to prevent
this sort of race condition. Using this scheme, the thread function follows these steps:

1. The loop in thread_function locks the mutex and reads the flag value.

2. If the flag is set, it unlocks the mutex and executes the work function.

3. If the flag is not set, it atomically unlocks the mutex and waits on the condition
variable.

The critical feature here is in step 3, in which GNU/Linux allows you to unlock the
mutex and wait on the condition variable atomically, without the possibility of
another thread intervening.This eliminates the possibility that another thread may
change the flag value and signal the condition variable in between thread_function’s
test of the flag value and wait on the condition variable.

05 0430 CH04 5/22/01 10:21 AM Page 88

894.4 Synchronization and Critical Sections

A condition variable is represented by an instance of pthread_cond_t. Remember
that each condition variable should be accompanied by a mutex.These are the func-
tions that manipulate condition variables:

n pthread_cond_init initializes a condition variable.The first argument is a
pointer to a pthread_cond_t instance.The second argument, a pointer to a con-
dition variable attribute object, is ignored under GNU/Linux.

The mutex must be initialized separately, as described in Section 4.4.2,
“Mutexes.”

n pthread_cond_signal signals a condition variable.A single thread that is blocked
on the condition variable will be unblocked. If no other thread is blocked on
the condition variable, the signal is ignored.The argument is a pointer to the
pthread_cond_t instance.

A similar call, pthread_cond_broadcast, unblocks all threads that are blocked on
the condition variable, instead of just one.

n pthread_cond_wait blocks the calling thread until the condition variable is sig-
naled.The argument is a pointer to the pthread_cond_t instance.The second
argument is a pointer to the pthread_mutex_t mutex instance.

When pthread_cond_wait is called, the mutex must already be locked by the
calling thread.That function atomically unlocks the mutex and blocks on the
condition variable.When the condition variable is signaled and the calling thread
unblocks, pthread_cond_wait automatically reacquires a lock on the mutex.

Whenever your program performs an action that may change the sense of the condi-
tion you’re protecting with the condition variable, it should perform these steps. (In
our example, the condition is the state of the thread flag, so these steps must be taken
whenever the flag is changed.)

1. Lock the mutex accompanying the condition variable.

2. Take the action that may change the sense of the condition (in our example, set
the flag).

3. Signal or broadcast the condition variable, depending on the desired behavior.

4. Unlock the mutex accompanying the condition variable.

Listing 4.14 shows the previous example again, now using a condition variable to
protect the thread flag. Note that in thread_function, a lock on the mutex is held
before checking the value of thread_flag.That lock is automatically released by
pthread_cond_wait before blocking and is automatically reacquired afterward.Also
note that set_thread_flag locks the mutex before setting the value of thread_flag
and signaling the mutex.

05 0430 CH04 5/22/01 10:21 AM Page 89

90 Chapter 4 Threads

Listing 4.14 (condvar.c) Control a Thread Using a Condition Variable

#include <pthread.h>

int thread_flag;
pthread_cond_t thread_flag_cv;
pthread_mutex_t thread_flag_mutex;

void initialize_flag ()
{
/* Initialize the mutex and condition variable. */
pthread_mutex_init (&thread_flag_mutex, NULL);
pthread_cond_init (&thread_flag_cv, NULL);
/* Initialize the flag value. */
thread_flag = 0;

}

/* Calls do_work repeatedly while the thread flag is set; blocks if
the flag is clear. */

void* thread_function (void* thread_arg)
{
/* Loop infinitely. */
while (1) {
/* Lock the mutex before accessing the flag value. */
pthread_mutex_lock (&thread_flag_mutex);
while (!thread_flag)
/* The flag is clear. Wait for a signal on the condition

variable, indicating that the flag value has changed. When the
signal arrives and this thread unblocks, loop and check the
flag again. */

pthread_cond_wait (&thread_flag_cv, &thread_flag_mutex);
/* When we’ve gotten here, we know the flag must be set. Unlock

the mutex. */
pthread_mutex_unlock (&thread_flag_mutex);
/* Do some work. */
do_work ();

}
return NULL;

}

/* Sets the value of the thread flag to FLAG_VALUE. */

void set_thread_flag (int flag_value)
{
/* Lock the mutex before accessing the flag value. */
pthread_mutex_lock (&thread_flag_mutex);
/* Set the flag value, and then signal in case thread_function is

blocked, waiting for the flag to become set. However,
thread_function can’t actually check the flag until the mutex is
unlocked. */

05 0430 CH04 5/22/01 10:21 AM Page 90

914.4 Synchronization and Critical Sections

thread_flag = flag_value;
pthread_cond_signal (&thread_flag_cv);
/* Unlock the mutex. */
pthread_mutex_unlock (&thread_flag_mutex);

}

The condition protected by a condition variable can be arbitrarily complex. However,
before performing any operation that may change the sense of the condition, a mutex
lock should be required, and the condition variable should be signaled afterward.

A condition variable may also be used without a condition, simply as a mechanism
for blocking a thread until another thread “wakes it up.”A semaphore may also be
used for that purpose.The principal difference is that a semaphore “remembers” the
wake-up call even if no thread was blocked on it at the time, while a condition
variable discards the wake-up call unless some thread is actually blocked on it
at the time.Also, a semaphore delivers only a single wake-up per post; with
pthread_cond_broadcast, an arbitrary and unknown number of blocked threads
may be awoken at the same time.

4.4.7 Deadlocks with Two or More Threads
Deadlocks can occur when two (or more) threads are each blocked, waiting for a con-
dition to occur that only the other one can cause. For instance, if thread A is blocked
on a condition variable waiting for thread B to signal it, and thread B is blocked on a
condition variable waiting for thread A to signal it, a deadlock has occurred because
neither thread will ever signal the other.You should take care to avoid the possibility
of such situations because they are quite difficult to detect.

One common error that can cause a deadlock involves a problem in which more
than one thread is trying to lock the same set of objects. For example, consider a pro-
gram in which two different threads, running two different thread functions, need to
lock the same two mutexes. Suppose that thread A locks mutex 1 and then mutex 2,
and thread B happens to lock mutex 2 before mutex 1. In a sufficiently unfortunate
scheduling scenario, Linux may schedule thread A long enough to lock mutex 1, and
then schedule thread B, which promptly locks mutex 2. Now neither thread can
progress because each is blocked on a mutex that the other thread holds locked.

This is an example of a more general deadlock problem, which can involve not
only synchronization objects such as mutexes, but also other resources, such as locks
on files or devices.The problem occurs when multiple threads try to lock the same set
of resources in different orders.The solution is to make sure that all threads that lock
more than one resource lock them in the same order.

05 0430 CH04 5/22/01 10:21 AM Page 91

92 Chapter 4 Threads

4.5 GNU/Linux Thread Implementation
The implementation of POSIX threads on GNU/Linux differs from the thread imple-
mentation on many other UNIX-like systems in an important way: on GNU/Linux,
threads are implemented as processes.Whenever you call pthread_create to create a
new thread, Linux creates a new process that runs that thread. However, this process is
not the same as a process you would create with fork; in particular, it shares the same
address space and resources as the original process rather than receiving copies.

The program thread-pid shown in Listing 4.15 demonstrates this.The program
creates a thread; both the original thread and the new one call the getpid function
and print their respective process IDs and then spin infinitely.

Listing 4.15 (thread-pid) Print Process IDs for Threads

#include <pthread.h>
#include <stdio.h>
#include <unistd.h>

void* thread_function (void* arg)
{
fprintf (stderr, “child thread pid is %d\n”, (int) getpid ());
/* Spin forever. */
while (1);
return NULL;

}

int main ()
{
pthread_t thread;
fprintf (stderr, “main thread pid is %d\n”, (int) getpid ());
pthread_create (&thread, NULL, &thread_function, NULL);
/* Spin forever. */
while (1);
return 0;

}

Run the program in the background, and then invoke ps x to display your running
processes. Don’t forget to kill the thread-pid program afterward—it consumes lots of
CPU doing nothing. Here’s what the output might look like:

% cc thread-pid.c -o thread-pid -lpthread
% ./thread-pid &
[1] 14608
main thread pid is 14608
child thread pid is 14610
% ps x
PID TTY STAT TIME COMMAND

14042 pts/9 S 0:00 bash
14608 pts/9 R 0:01 ./thread-pid

05 0430 CH04 5/22/01 10:21 AM Page 92

934.5 GNU/Linux Thread Implementation

14609 pts/9 S 0:00 ./thread-pid
14610 pts/9 R 0:01 ./thread-pid
14611 pts/9 R 0:00 ps x
% kill 14608
[1]+ Terminated ./thread-pid

Job Control Notification in the Shell
The lines starting with [1] are from the shell. When you run a program in the background, the shell

assigns a job number to it—in this case, 1—and prints out the program’s pid. If a background job termi-

nates, the shell reports that fact the next time you invoke a command.

Notice that there are three processes running the thread-pid program.The first of
these, with pid 14608, is the main thread in the program; the third, with pid 14610, is
the thread we created to execute thread_function.

How about the second thread, with pid 14609? This is the “manager thread,” which
is part of the internal implementation of GNU/Linux threads.The manager thread is
created the first time a program calls pthread_create to create a new thread.

4.5.1 Signal Handling
Suppose that a multithreaded program receives a signal. In which thread is the signal
handler invoked? The behavior of the interaction between signals and threads varies
from one UNIX-like system to another. In GNU/Linux, the behavior is dictated by
the fact that threads are implemented as processes.

Because each thread is a separate process, and because a signal is delivered to a par-
ticular process, there is no ambiguity about which thread receives the signal.Typically,
signals sent from outside the program are sent to the process corresponding to the
main thread of the program. For instance, if a program forks and the child process
execs a multithreaded program, the parent process will hold the process id of the main
thread of the child process’s program and will use that process id to send signals to its
child.This is generally a good convention to follow yourself when sending signals to a
multithreaded program.

Note that this aspect of GNU/Linux’s implementation of pthreads is at variance
with the POSIX thread standard. Do not rely on this behavior in programs that are
meant to be portable.

Within a multithreaded program, it is possible for one thread to send a signal
specifically to another thread. Use the pthread_kill function to do this. Its first para-
meter is a thread ID, and its second parameter is a signal number.

4.5.2 The clone System Call
Although GNU/Linux threads created in the same program are implemented as sepa-
rate processes, they share their virtual memory space and other resources.A child
process created with fork, however, gets copies of these items. How is the former type
of process created?

05 0430 CH04 5/22/01 10:21 AM Page 93

94 Chapter 4 Threads

The Linux clone system call is a generalized form of fork and pthread_create that
allows the caller to specify which resources are shared between the calling process and
the newly created process.Also, clone requires you to specify the memory region for
the execution stack that the new process will use.Although we mention clone here to
satisfy the reader’s curiosity, that system call should not ordinarily be used in programs.
Use fork to create new processes or pthread_create to create threads.

4.6 Processes Vs.Threads
For some programs that benefit from concurrency, the decision whether to use
processes or threads can be difficult. Here are some guidelines to help you decide
which concurrency model best suits your program:

n All threads in a program must run the same executable.A child process, on the
other hand, may run a different executable by calling an exec function.

n An errant thread can harm other threads in the same process because threads
share the same virtual memory space and other resources. For instance, a wild
memory write through an uninitialized pointer in one thread can corrupt
memory visible to another thread.

An errant process, on the other hand, cannot do so because each process has a
copy of the program’s memory space.

n Copying memory for a new process adds an additional performance overhead
relative to creating a new thread. However, the copy is performed only when
the memory is changed, so the penalty is minimal if the child process only reads
memory.

n Threads should be used for programs that need fine-grained parallelism. For
example, if a problem can be broken into multiple, nearly identical tasks, threads
may be a good choice. Processes should be used for programs that need coarser
parallelism.

n Sharing data among threads is trivial because threads share the same memory.
(However, great care must be taken to avoid race conditions, as described previ-
ously.) Sharing data among processes requires the use of IPC mechanisms, as
described in Chapter 5.This can be more cumbersome but makes multiple
processes less likely to suffer from concurrency bugs.

05 0430 CH04 5/22/01 10:21 AM Page 94

