
Chapter 1. Introduction

Contents

 What Operating Systems Do?
 Computer-System Organization
 Computer-System Architecture
 Operating-System Structure
 Operating-System Operations
 Process Management
 Memory Management
 Storage Management
 Protection and Security
 Distributed Systems
 Special-Purpose Systems
 Computing Environments
 Open-Source Operating Systems

21. introduction

Objectives

 To provide a grand tour of the major operating systems components
 To describe the basic organization of computer systems.

31. introduction

1.1 What Operating Systems do?

 What is an Operating System ?
 A program that acts as an intermediary between a user/application

of a computer and the computer hardware.
 manage the computer hardware/resources
 controls the execution of applications
 provide a basis for application programs.

 Operating system goals:
 Convenience: OS provide an environment in which make the

computer system convenient to use
 Efficiency: Use the computer hardware in an efficient manner.
 Ability to evolve: Permit the effective development, testing, and

introduction of new system functions without interfering with service

Convenience or Efficiency or Both

PC Mainframe
41. introduction

Computer System Structure

 Computer system can be divided into four components
1. Hardware

 provides basic computing resources
(ex) CPU, memory, I/O devices

2. Operating system
 controls and coordinates the use of the hardware among the various

application programs for the various users.
3. Applications programs

 Define the ways in which the system resources are used to solve the
computing problems of the users
(ex) word processors, compilers, web browsers, database systems,

video games, spreadsheet ...
4. Users

 people, machines, other computers

51. introduction

Four Components of a Computer System

61. introduction

Operating System Definitions

 An operating system provides an environment within which other
programs can do useful work.

"An operating system is similar to a government.“
 User View

 varies according to the interface being used
(ex) PC, mainframe/minicomputer, servers, mobile computer,

embedded computers
 PC  ease of use, performance (some) , resource utilization (no)

 Systems View
 OS is a resource allocator

 manages and allocates resources
(resources: CPU time, memory space, file storage space, I/O device)

 OS is a control program
 controls the execution of user programs and operations of I/O

devices .

71. introduction

Operating System as a User/Computer Interface

1. introduction 8

API (Application Programming Interface)
ABI (Application Binary Interface)
ISA (Instruction Set Architecture)

Operating System as Resource Allocator/Controller

1. introduction 9

Operating System Definitions (cont’)

 Defining Operating System
 No universally accepted definition

 “Everything a vendor ships when you order an operating system” is
good approximation. But varies greatly across systems
 Microsoft case : US Department of Justice filed suit against Microsoft

claiming that Microsoft included too much functionality in its OS.
(ex: web browser)  guilty of monopoly to limit competition

 More common definition – kernel
 Kernel: the one program running at all times”

 Two other types of programs
 a system program: program associated with the OS, but are not part

of kernel.
 an application program: program not associated with the operation of

the system

101. introduction

Middleware

 Mobile operating systems often include not only core kernel but
also middleware

 Middleware
 a set of software frameworks that provide additional services to

application developers
(ex) Apple iOS, Google Android

1. introduction 11

1.2 Computer-System Operation

 Computer-System Architecture (Old-fashion)

121. introduction

Modern Computer System

 Computer-System Architecture (Modern)
 one or more CPU, device controllers connect through common bus

providing access to shared memory.
 CPUs and devices can execute concurrently, competing for memory

cycles

131. introduction

1.2.1 Computer System Operation

 Bootstrap program – computer startup program
 initial program to run when the computer is powered up or reboot
 typically stored in ROM or EEPROM, generally known as firmware

 Operation of bootstrap program
 initialize all aspects of system (ex: CPU register, device controller,

memory contents ...) and
 locate and load into memory the operating system kernel and

start executing the first process (ex: init)

14

CPU
reset

power

bootstrap
program

OS

memory

(1) (2)
OS kernel

image

disk …

(3)
load

(4)
execute

initialize
ROM

1. introduction

Interrupts

 Interrupt
 a signal to the CPU emitted by hardware or software

indicating an event that requires immediate attention.
 Interrupt types

 넓은 의미의 interrupt: all kinds of interrupts
(이 때에는 trap/exception도 같은 의미로 사용)

 좁은 의미의 interrupt: hardware interrupt

1. introduction 15

hardware interrupt
(interrupt)

by an external I/O device
at any time

Internal interrupt
(trap, exception)

by an execution error
(divide by zero, invalid memory access…)

software interrupt
(system call)

by a software request for OS service
- special instruction

by software
(exception,

or trap)

Relationship between OS and Interrupt

 An operating system is interrupt driven.
 An Operating System performs appropriate interrupt handling action.
 “no interrupt, no work”

 Example
interrupts OS’s works

 hardware interrupt  I/O handling, timer handling
 internal interrupt (exception)  error handling
 software interrupt (system call)  provide OS services to applications

161. introduction

Interrupt Sequence

 Interrupt Sequence
 When the CPU is interrupt, it stops what it is doing and

save the address of the interrupted instruction.
 Interrupts transfers control to the interrupt service routine (ISR)
 After the interrupt is serviced, the control is transferred to the saved

return address  resume the interrupted computation.

17

ISR
program

(1) interrupt

PC
(2) save return address

(where ?  fixed location or system stack)

(3)

(4)

(5)

1. introduction

Determining the address of ISR

 Polled interrupt
 invoke a general polling routine (at a fixed location) to examine the

interrupt information
 then, the routine calls the interrupt-specific handler by polling devices

 Vectored interrupt
 a unique number is given with the interrupt request
 The address of the interrupt service routines is provided through the

interrupt vector (array of addresses), indexed by a given unique
number .

 quick interrupt handling

18

ISR address
interrupt
vector
number

interrupt vector table

device

1. introduction

Polled Interrupt vs. Vectored Interrupt

Polled Interrupt Vectored Interrupt

19

General Interrupt
polling routine

ISR A

ISR K

....

....

interrupt K
occurs

poll
devices

jump to
ISR K

memory

addr of ISR A

ISR A

ISR K
....

....

interrupt K
occurs

jump to
ISR K

memory

addr of ISR K
...

interrupt
vector
table

interrupt
vector

number

1. introduction

Interrupt Time Line

 I/O devices and the CPU can execute concurrently
 I/O device usually interrupts CPU when I/O transfer is done.

201. introduction

Interrupt Time Line (detail)

 CPU
 user

 OS

 I/O
device

21

system
call

H/W
interrupt

timer

another
program

the completion
of I/O operation

H/W
interrupt

sys
call

1. introduction

trap

1.2.2 Storage Structure

 Main memory
 the CPU can access main memory directly  memory address
 the CPU can load instruction only from memory
 programs must be in main memory to be executed.
(von Neumann architecture - both programs and data are stored

in main memory)
 DRAM : the most common main memory
 cannot reside programs/data in main memory permanently

for two reasons : (1) too small (2) volatile storage
 Secondary storage

 extension of main memory that provides large nonvolatile storage
capacity.

 Magnetic disks: the most common secondary storage
 The disk controller determines the logical interaction between the

device and the computer.

221. introduction

Storage Hierarchy

 Storage systems organized in hierarchy.

Higher level Lower level
 Speed: fast slow
 Cost: expensive inexpensive
 Volatility: volatile nonvolatile

 Caching
 copying information into faster storage system on a temporary basis
 Examples

 cache memory : invisible to software
 main memory can be viewed as a cache for secondary storage

231. introduction

Storage-Device Hierarchy

24

invisible to
software

secondary
storage

primary storage

processor

higher level

volatile

nonvolatile
(flash memory)

1. introduction

1.2.3 I/O Structure

 Data transfer between I/O device and the CPU is done
through a device controller.

 Device controller
 Each device controller is in charge of a specific type of device
 Depending on the controller, more than one device may be attached

(ex) SCSI controller
 A device controller has a local buffer and a set of special-purpose

registers.
 The device controller is responsible for moving the data between

the peripheral devices and its local buffer storage

251. introduction

Memory Device
Controller

I/O
DeviceCPU

local buffer

Device Driver

 I/O data transfer
 Main memory  Local buffer (by CPU)
 Local buffer  the device (by device controller)

 A large portion of OS code is dedicated to managing I/O
 because of its importance to the reliability and performance
 because of varying nature the devices

 Device driver
 Typically, operating systems have a device drivers for each device

controller.
 understands the device controller and

presents a uniform interface to the device to the rest of the OS

1. introduction 26

I/O operations

 To start an I/O operation,
 the device driver loads the appropriate registers within the device

controller.
 the device controller examines the registers to determine what action

to take.
 the controller start the transfer

 Three modes of I/O operations
 Programmed I/O (Polling)
 Interrupt-driven I/O
 Direct memory access(DMA) based I/O

1. introduction 27

Programmed I/O (Polling)

 CPU waits I/O transfer completion.
 CPU tests I/O transfer completion by repeatedly reading status

information.
 Once the transfer is complete, CPU performs transfer of data

between device controller and memory

 CPU cannot execute any other jobs while an I/O operation is in
progress
 solution : Interrupt-driven I/O

1. introduction 28

Interrupt-driven I/O operation

 CPU can execute any other jobs after starting I/O operation.

 Once the transfer is complete,
 the device controller informs the device driver via an interrupt
 then, CPU performs transfer of data between device controller and

memory.

 Interrupt-driven I/O is fine for moving small amounts of data,
but can produce high overhead for bulk data movement such as
disk I/O
 solution: DMA (direct memory access)

291. introduction

Direct Memory Access (DMA)

 Direct Memory Access(DMA)
 DMA controller transfers directly a block of data between memory and

the buffer in the device controller without CPU intervention
 able to transmit information at close to memory speeds.
 used for high-speed I/O devices

 CPU initiates I/O operation, but is not involved in data transfer.

30

CPU

memory I/O
controller

I/O
device

DMA
controller

1. introduction

CPU

memory

I/O
controller

I/O
device

DMA
controller

DMA operation

 Operation
 CPU sets up buffers, pointers, and counters for I/O device
 DMA controller performs the data transfer by DMA
 DMA controller interrupts the CPU when the block transfer has been

completed.
 Comparison between DMA and Interrupt I/O

 DMA: one interrupt per block
 Interrupt-driven I/O: one interrupt per byte.

31

DMA

Interrupt

device

DMA DMA DMA DMA

CPU
interrupt

CPU

device

intr
CPU CPU CPU CPU

CPU

CPU
intr intr intr

1. introduction

1.3 Computer-System Architecture

 Single-processor systems
 Multiprocessor systems

 also known as parallel system
 have more than one CPU in close communication

 called “tightly coupled system”
 Advantages of multiprocessor systems

 Increased throughput
 Economy of scale

 because of sharing peripherals, mass storage
 Increased reliability

 graceful degradation
 fault tolerant systems

321. introduction

Symmetric vs. Asymmetric Multiprocessing

 Symmetric multiprocessing (SMP) vs. Asymmetric multiprocessing
 SMP : each processor performs all tasks within the OS

 asymmetric multiprocessing: each processor is assigned a specific
task. A master processor controls the system

331. introduction

Multi-core Processor and Blade server

 Multi-core processor on a single chip
 multi-core CPUs appear to the OS as N standard processors

 Blade servers
 multiple processor boards, I/O boards, and networking boards are

placed in the same chassis.
 each blade processor board boots independently and runs its own OS

34

Intel Core i7
quad-core blade server

1. introduction

Clustered Systems

 Like multiprocessor systems, clustered systems gather together
multiple systems to accomplish computational work.
 linked via a LAN or a faster interconnect (ex. InfiniBand).
 Provides a high-availability service which survives failures
 Some clusters are for high-performance computing (HPC)

 Applications must be written to use parallelization
 Usually sharing storage via a storage-area network (SAN)

351. introduction

1.4 Operating-System Structure

 Evolution of Operating Systems

1. introduction 36

1.4 Operating-System Structure

 Multiprogramming – needed for efficiency
 Multiprogramming : Several jobs are kept in main memory at the

same time, and the CPU is multiplexed among them.
 Single user cannot keep CPU and I/O devices busy at all times
 Multiprogramming increase CPU utilization by keeping CPU and

I/O busy at all times

 job pool : the jobs are kept initially on the disk.
 A subset of total jobs in system is kept in memory
 one job of them is selected and run

via job scheduling

 When it has to wait (for I/O for example),
OS switches to another job

371. introduction

Uniprogramming and Multiprogramming

1. introduction 38

1. introduction 39

Operating-System Structure (cont’)

 Time-Sharing (or Multitasking)
 a logical extension of multiprogramming
 The CPU is multiplexed among multiple jobs so frequently that users

can interact with each job while it is running.
 interactive computer system

 The response time should be short (< 1sec)

 In time shared operating system,
 each user has at least one separate program in memory  process
 if several jobs are ready to run at the same time  CPU scheduling
 If processes do not fit in the memory, they are swapped in and out of

main memory to the disk  swapping
 virtual memory allows execution of processes not completely in

memory

401. introduction

Batch Multiprogramming vs. Time Shaing

1. introduction 41

1.5 Operating-System Operations

 Operating systems are interrupt driven
 I/O requests  hardware interrupt
 software error  internal interrupt (exception, trap)

 division by zero or invalid memory access ...
 OS service request  software interrupt (system call)

 request from a user program for operating system service

 With sharing, many processes could be affected
by a bug in a program.
 infinite loop
 modify another process or the operating system

 Sharing system resources requires protection
 protect operating system and all other programs from

any malfunctioning program to ensure proper operation

421. introduction

execute
OS program

Dual-Mode Operation

 Dual mode operation
 most CPU provide hardware support to differentiate between at least

two modes of operations.
1. User mode
2. Kernel mode

(also called supervisor, monitor, system, privileged mode)
 CPU mode bit indicates the current mode.

 for example, kernel (0) or user (1)
 Dual-mode operation allows OS to protect itself and other system

components
 distinguish between the execution of OS code and user-defined code

 Multimode operation
 the concepts of modes can be extended beyond two modes
 CPUs that support virtualization frequently have a separate mode for

virtualization

431. introduction

(ex) 4-level Protection of Intel 386

1. introduction 44

Privileged Instruction

 Privileged Instruction
 the hardware allows privileged instructions

to be executed in only kernel mode.
 An attempt to execute a privileged instruction

in user mode causes an exception.
 privilege violation

 Examples of privileged instructions
 I/O instructions
 timer management, interrupt management, MMU register management
 system control instructions: HALT, Enable/Disable interrupt,

Switch to kernel mode …

45

instruction set

privileged
instructions

1. introduction

User Mode and Kernel Mode

 User Mode
 user program execute in user

mode.
 privileged instructions cannot

be executed.
 certain areas of memory are

protected from user access

 Kernel Mode
 OS (monitor) executes in

kernel mode
 privileged instructions may be

executed
 protected areas of memory

may be accessed

 switch into kernel mode when
an interrupt occurs

1. introduction 46

Transition from User to Kernel mode

 Transition of CPU operation mode
 At power on, start in kernel mode
 The OS is loaded and start user processes in user mode
 When an interrupt occurs, switches to kernel mode.
 when return from interrupt, switches to user mode (original mode).

 The lack of a hardware-supported dual mode
 can cause serious shortcomings in an operating system.

(ex) 8088 architecture and MS-DOS : no dual mode

47

kernel user

interrupt , trap(exception), system call

set user mode

reset
return from interrupt

start user processes

1. introduction

Transition from User to Kernel mode (cont’)

 System call sequence
 Invoke system call (by INT, trap, or syscall instruction)
 Control passes to a service routine in the OS, and the mode bit is set

to kernel mode.
 The service routine verifies that the parameters are correct and legal,

and executes the request
 returns control to the instruction following the system call.

481. introduction

System Call Sequence

49

user program

read() int 20

user mode kernel mode

20

sysread()
interrupt

vector table

operating system

read()

I/O service

parameter검사

(int는 IA32의 software interrupt 명령어)

error

1. introduction

Timer and CPU Protection

 CPU protection
 use timer to prevent infinite loop / process hogging resources

 Timer Interrupt
 A timer interrupts the CPU after specified period (ex: 1/60 sec)
 OS sets the timer (counter).
 Timer is decremented every clock tick.
 When timer reaches the value 0, an interrupt occurs.

 The use of timer
 to implement time sharing.
 to compute the current time.

501. introduction

1.6 Process Management

 A process is a program in execution.
 It is a unit of work within the system.
 Program is a passive entity, process is an active entity.

 Process needs resources to accomplish its task
 CPU, memory, I/O, files
 Initialization data

 Process termination requires reclaim of any reusable resources
 Typically system has many processes running concurrently on one

or more CPUs – some user processes, some OS
 Concurrency by multiplexing the CPUs among the processes / threads

511. introduction

Process Management Activities

 The operating system is responsible for the following activities in
connection with process management:
 Creating and deleting both user and system processes
 Suspending and resuming processes
 Providing mechanisms for process synchronization
 Providing mechanisms for process communication
 Providing mechanisms for deadlock handling

521. introduction

1.7 Memory Management

 All data in memory before and after processing
 All instructions in memory in order to execute
 Memory management determines what is in memory when

 Optimizing CPU utilization and computer response to users

 Memory management activities
 Keeping track of which parts of memory are currently being used and

by whom
 Deciding which processes (or parts thereof) and data to move into and

out of memory
 Allocating and deallocating memory space as needed

531. introduction

1.8 Storage Management

 OS provides uniform, logical view of information storage
 Abstracts physical properties to logical storage unit  file
 Each medium is controlled by storage device(ex: disk drive, tape drive)

 Varying properties include access speed, capacity,
data-transfer rate, access method (sequential or random)

 File-System management - one of most visible components of OS
 Files usually organized into directories
 Access control on most systems to determine who can access what
 File-system management activities :

 Creating and deleting files and directories
 Primitives to manipulate files and directories
 Mapping files onto secondary storage
 Backup files onto stable (non-volatile) storage media

541. introduction

Mass-Storage Management

 Usually disks used to store
 data that does not fit in main memory, or
 data that must be kept for a “long” period of time.

 Entire speed of computer operation hinges on disk subsystem and
its algorithms because disk is used frequently.

 Proper management is of central importance
 OS activities

 Free-space management
 Storage allocation
 Disk scheduling

551. introduction

Caching

 Caching - copying information into faster storage system on a
temporary basis

 Important principle, performed at many levels in a computer
 cache memory
 main memory can be viewed as a cache for secondary storage

 Faster storage (cache) checked first to determine if information is
there
 If it is, information used directly from the cache (fast)
 If not, data copied to cache and used there

 Cache is smaller than storage being cached
 cache management is important
 selection of the cache size and a replacement policy

561. introduction

Performance of Various Levels of Storage

 Movement between levels of storage hierarchy can be
explicit or implicit

571. introduction

Migration of Integer A from Disk to Register

 Multitasking environments must be careful to use most recent
value, no matter where it is stored in the storage hierarchy

 Coherency and Consistency
 the same data may appear in different level of the storage

hierarchy  data in different level must be consistent.
(ex) cache coherency

 In multitasking environment, multiprocessor environment,
distributed environment, the situation becomes more complex

581. introduction

I/O Subsystem

 One purpose of OS is to hide peculiarities of hardware devices
from the user

 I/O subsystem responsible for
 Memory management of I/O including

 buffering – storing data temporarily while it is being
transferred

 caching – storing parts of data in faster storage for
performance

 spooling – storing output for a device that cannot accept
interleaved data stream

 General device-driver interface
 Drivers for specific hardware devices

591. introduction

1.9 Protection and Security

 Protection – any mechanism for controlling access of processes
or users to resources defined by the OS

 Security – defense of the system against internal and external
attacks
 Huge range, including denial-of-service, worms, viruses, identity theft,

theft of service
 Systems generally first distinguish among users, to determine who

can do what
 user ID, group ID ...

601. introduction

1.10 Kernel Data Structures

1. introduction 61

n Many similar to standard programming data structures
n Singly linked list

n Doubly linked list

n Circular linked list

 Binary search tree
 left <= right
 search performance

 worst case O(n)

 Balanced binary search tree
 search performance

 O(lg n)

1. introduction 62

 Hash function can create a hash map

 Bitmap – string of n binary digits representing the status of n items
 Linux data structures defined in

<linux/list.h>, <linux/kfifo.h>, <linux/rbtree.h>

1. introduction 63

1.11 Computing Environments

 Traditional Computing
 batch
 interactive, time-sharing by multi-users
 interactive, time-sharing by single user

 Blurring over time
 Office environment

 PCs connected to a network,
terminals attached to mainframe or minicomputers providing batch
and timesharing

 Now portals allowing networked and remote systems access to
same resources

 Home networks
 Used to be single system, then modems
 Now firewalled, networked

1. introduction 64

 Mobile Computing
 computing on mobile devices such as smartphones and tablet

computers
 mobile devices use wireless or cellular data network
 applications that take advantage of the unique features of mobile

devices, such as GPS and accelerometers ..
 augmented-reality(AR) application

 Apple iOS, Google Android
 Distributed Systems

 Distribute the computation among several physical processors.
 Each processor has its own local memory; processors communicate

with one another through communications lines
 network protocol : TCP/IP …
 network : LAN, WAN, MAN, PAN ...
 network operating system vs. distributed operating systems

1. introduction 65

 Client-Server Computing

 Peer-to-Peer Computing
 clients and servers are not

distinguished from one another

661. introduction

- web server
- compute server
- file server

 Virtualization
 Allows operating systems to run applications within other OSes

 Vast and growing industry
 VMM (virtual machine Manager) provides virtualization services

1. introduction 67

Vmware
VirtualBox
QEMU
Xen

 Cloud Computing
 a type of computing that delivers computing, storage, and even

applications as a service across a network.

1. introduction 68

Cloud Computing

 Logical extension of virtualization because it uses virtualization as
the base for it functionality.

 Many types
 Public cloud – available via Internet to anyone willing to pay
 Private cloud – run by a company for the company’s own use
 Hybrid cloud – includes both public and private cloud

components
 Software as a Service (SaaS) – one or more applications

available via the Internet (i.e., word processor)
 Platform as a Service (PaaS) – software stack ready for

application use via the Internet (i.e., a database server)
 Infrastructure as a Service (IaaS) – servers or storage available

over Internet (i.e., storage available for backup use)

1. introduction 69

1.12 Open-Source Operating Systems

 Operating systems made available in source-code format rather
than just binary closed-source

 Counter to the copy protection and Digital Rights Management
(DRM) movement

 Started by Free Software Foundation (FSF), which has “copyleft”
GNU Public License (GPL)

 Examples include
 GNU/Linux - hundreds of distributions
 BSD UNIX (including core of Mac OS X) - FreeBSD, OpenBSD,Darwin
 Sun (now Oracle) Solaris - OpenSolaris

701. introduction

